eaiovnaovbqoebvqoeavibavo ELF> @@8 @00 55XYz HH5H5  888$$ Std Ptdccc77QtdRtd55xxGNUɱg"GYtA P "  ($Q @ @P!HwAjA@VP1%$ X< 0 @@PCY2P9PDU& !D @  xHE`@ @  @@CZXA "H E1Dh!"#$%')*+,-./0145678;>?@BEFGHIJKLOSUVXYZ\_`bcghijlmnpqrtvxy{}VhgHzω&Kz۶\hԉ&OzêZ7XMIzh!p#{#g 6Y{_1;l 6_l3Ԍܽҁ+΋_1;Yҁr3˥GVIVeyMVݭ61Vα(8^MTѱ61(ձέTD:ayƦ!bβ"K%[DnU&b@ay1zH(QlgIQ(0)_UStN/y( _JtHJ%*5ygB} .n4EmB}Fצ;*vr&K%{JBEu7A*ѡhvr{{7Ԧ& Ԧסh7 ԦΧK%8HH<5HyΞ#w;2Jš }'3`q'wfg?ᣁf}/=yfg/] 1]g$`ģy5][(՛`R&K%!s`Pg衫 `R!s-T'nygRyqX'ny|gRTuQ_%<էiF(%鵣J%i5> ,,_·ǃ/,_ǃ;> (2,_#.ǃ'4X (q  e oXd 7U[M v 7Z  L%n ( \ ^H  o l9 | } M#  LXn  1 H krE<p  p  / | , 5  Gf,6F"   Mf Ca T$ +z u  +  4 0   ^]   1:|vi *m @ !4 [  N   U6J Q i.b  | A! W  } -XGr8 "F    R  xo;C  ^}{E^ { *. ]k (3 <A &32 @  >  ) . )T -+  0 :  ++  8 \ E* DJ = S 1S8 > ] A  @%3 `:  @2 A   P++ @  ?8P `93 :  =  > D D T P 0) : E 09$W P>  p! 8  P=  @  =  ) p  P* 9  PB 6 '3 P@    <5 6N @> 8 D ` * HZ 9 w 0-+t >  @ ' @ Y @;  % x P)S A  P8 w 9 A ;  :  >  P: - +  `@  A v EA >e 9  8 7 ;  p=  =  )  04b . 6w 2j A  ' PA  `7 %3I (3, :  0Q :  0=  * ++  @'3A /4 `-+   `. >  uk `;  Hx ,+ B  AJ '3Q 0;  @?L p8 796 0B * G `A( (3 -+ `GA1 8' G} > > @2N  :b P;  -+ 4  `8 k p>  =  pBh @E   ) C > : <R~ ;V 5  @  0H2 p1N p* &3 p@  =  p;  Ha `>  8  A  p,+n 9  08 ! : } @A  p) @(3& = V 2 ?1 : P E %( -+ @&35P *; 9 e 1U C7 +" `=  ,+ &g A  %30 >  >L pI* .J 1 `/ p: & 8'n ++ `F B = @ ? *>96 GJZ6 0: _  =  . & 0  /t ;VI ;  @= r 0A  '3  @  @<7 &3 =  0* :  ,+H @  9  = UZ6 @,+r 0.$$ ) @: __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_npy_umathmodule_ARRAY_APIPyArg_ParseTuplePyCallable_CheckPyMem_RawMallocPyObject_InitmemsetPyObject_GetAttrStringPyBytes_AsStringAndSizePyErr_OccurredPyErr_ClearmemcpyPyExc_TypeErrorPyErr_SetStringPyErr_NoMemoryPyExc_ValueErrorPyErr_Format__stack_chk_failPyNumber_Multiplynpy_ctanhlnpy_ctanhnpy_ctanhfnpy_ctanlnpy_ctannpy_ctanfnpy_csqrtlnpy_csqrtnpy_csqrtfnpy_csinhlnpy_csinhnpy_csinhfnpy_csinlnpy_csinnpy_csinfPyLong_FromLongPyNumber_TrueDivide_Py_NoneStructPyNumber_Powernpy_cpowfPyObject_IsTruenpy_cloglnpy_clognpy_clogfPyObject_RichCompareBoolnpy_cpowlnpy_cpownpy_cexplnpy_cexpnpy_cexpfnpy_ccoshlnpy_ccoshnpy_ccoshfnpy_ccoslnpy_ccosnpy_ccosfnpy_catanhlnpy_catanhnpy_catanhfnpy_catanlnpy_catannpy_catanfnpy_casinhlnpy_casinhnpy_casinhfnpy_casinlnpy_casinnpy_casinfnpy_cacoshlnpy_cacoshnpy_cacoshfnpy_cacoslnpy_cacosnpy_cacosfPyUnicode_TypePyUnicode_AsUTF8StringstrlenmallocPyObject_Not_Py_FalseStruct_Py_TrueStructPyInit_umathPyModule_Create2PyImport_ImportModulePyCapsule_TypePyCapsule_GetPointerPyType_ReadyPyModule_GetDictPyUFunc_APIPyCapsule_NewPyDict_SetItemStringPyBytes_FromStringPyNumber_AbsolutePyNumber_AddPyNumber_AndPyNumber_OrPyNumber_XorPyNumber_DivmodPyNumber_FloorDividePyNumber_InvertPyNumber_LshiftPyNumber_NegativePyNumber_PositivePyNumber_RemainderPyNumber_RshiftPyNumber_SubtractPyFloat_FromDoublePyModule_AddIntConstantPyModule_AddStringConstantPyModule_AddObjectPyDict_GetItemStringPyUnicode_InternFromStringPyExc_RuntimeErrorPyExc_ImportErrorPyExc_AttributeError__memcpy_chknpy_half_to_floatnpy_float_to_halfnpy_half_to_doublenpy_double_to_halfPyObject_CallMethodPyTuple_NewPyEval_CallObjectWithKeywordsPyTuple_SizePyGILState_EnsurePyGILState_Releasenpy_set_floatstatus_divbyzeroPyExc_FutureWarningPyErr_WarnExnpy_clear_floatstatusnpy_spacingfnpy_nextafterfnpy_get_floatstatusnpy_spacingnpy_nextafternpy_spacinglnpy_nextafterlnpy_half_eqnpy_half_nenpy_half_ltnpy_half_lenpy_half_gtnpy_half_genpy_half_iszeronpy_half_isnannpy_half_isinfnpy_half_isfinitenpy_half_signbitnpy_half_spacingnpy_half_copysignnpy_half_nextafternpy_half_divmodPyObject_RichComparePyUnicode_FromStringPyOS_snprintfPyExc_RuntimeWarningstderr__fprintf_chkPy_BuildValuePyObject_CallObjectPyExc_FloatingPointErrorPyExc_NameErrorPyLong_AsLongPyEval_SaveThreadPyEval_RestoreThreadPyMem_RawFreePyDict_GetItemPyList_NewPyUnicode_FromStringAndSizePyUnicode_FromFormatPyThreadState_GetDictPyEval_GetBuiltinsPyType_IsSubtypePyDict_NextPyUnicode_AsASCIIStringPyBool_TypePyTuple_TypePyExc_DeprecationWarningPyObject_GetAttrPyObject_CallFunctionPyFloat_TypePyComplex_TypePyObject_CallFunctionObjArgsPyUnicode_ConcatPyArg_ParseTupleAndKeywords__memset_chkPyDict_SetItemmemmovePyTuple_PackPyErr_SetObjectPyExc_IndexErrorPyErr_ExceptionMatches_Py_NotImplementedStructPySequence_SizePySequence_GetItemPyLong_FromLongLongPyList_TypestrcpyPyMem_RawReallocPyDict_NewPyExc_KeyErrorPyLong_FromDoublePyLong_FromUnsignedLongLongPyLong_FromUnsignedLongnpy_set_floatstatus_overflowPyLong_TypePyDict_TypePySet_TypePyFrozenSet_TypePyBytes_TypePySlice_Type_Py_EllipsisObjectPyObject_ReprPyDict_DelItemStringPyTuple_GetSlicePyObject_TypePyObject_IsInstancePyObject_CallPyDict_Copyfreeqsortfetestexceptfeclearexceptferaiseexceptnpy_set_floatstatus_underflownpy_set_floatstatus_invalidnpy_fabsfnpy_fabsnpy_fabslnpy_cabsfnpy_cargfnpy_cabsnpy_cargnpy_cabslnpy_carglnpy_half_eq_nonannpy_half_lt_nonannpy_half_le_nonannpy_floatbits_to_halfbitsnpy_doublebits_to_halfbitsnpy_halfbits_to_floatbitsnpy_divmodfnpy_halfbits_to_doublebitsnpy_sinlnpy_coslnpy_tanlnpy_sinhlnpy_coshlnpy_tanhlnpy_floorlnpy_ceillnpy_rintlnpy_trunclnpy_sqrtlnpy_log10lnpy_loglnpy_explnpy_expm1lnpy_asinlnpy_acoslnpy_atanlnpy_asinhlnpy_acoshlnpy_atanhlnpy_log1plnpy_exp2lnpy_log2lnpy_atan2lnpy_hypotlnpy_powlnpy_fmodlnpy_copysignlnpy_modflnpy_ldexplnpy_frexplnpy_cbrtlnpy_sinnpy_cosnpy_tannpy_sinhnpy_coshnpy_tanhnpy_floornpy_ceilnpy_rintnpy_truncnpy_sqrtnpy_log10npy_lognpy_expnpy_expm1npy_asinnpy_acosnpy_atannpy_asinhnpy_acoshnpy_atanhnpy_log1pnpy_exp2npy_log2npy_atan2npy_hypotnpy_pownpy_fmodnpy_copysignnpy_modfnpy_ldexpnpy_frexpnpy_cbrtnpy_sinfnpy_cosfnpy_tanfnpy_sinhfnpy_coshfnpy_tanhfnpy_floorfnpy_ceilfnpy_rintfnpy_truncfnpy_sqrtfnpy_log10fnpy_logfnpy_expfnpy_expm1fnpy_asinfnpy_acosfnpy_atanfnpy_asinhfnpy_acoshfnpy_atanhfnpy_log1pfnpy_exp2fnpy_log2fnpy_atan2fnpy_hypotfnpy_powfnpy_fmodfnpy_copysignfnpy_modffnpy_ldexpfnpy_frexpfnpy_cbrtfnpy_heavisidefnpy_rad2degfnpy_deg2radfnpy_log2_1pfnpy_exp2_m1fnpy_logaddexpfnpy_logaddexp2fnpy_heavisidenpy_rad2degnpy_deg2radnpy_log2_1pnpy_exp2_m1npy_logaddexpnpy_logaddexp2npy_divmodnpy_heavisidelnpy_rad2deglnpy_deg2radlnpy_log2_1plnpy_exp2_m1lnpy_logaddexplnpy_logaddexp2lnpy_divmodllibm.so.6libpython3.7m.so.1.0libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.3.4GLIBC_2.2.5GLIBC_2.27/opt/alt/python37/lib64-POii Zti dui p|ui p5p5P5555N5N5tN5M5O5O5M5P 5M(5O05M85P@5O5O555J5p5]O5  5O(5`@5JH5 755"655@55 555505555055`5 5(50585@5@H5pP5X5@`5h5@p5x505~5~55p5$5`5л5@55 5555` 5M@5H5KP5X5`5h5pp5` x595:5:5K6K 6@(606686 @6@H6{P6PX6 `6 h6@ p6p x66C6@6666 666p76`76 66f6p6c6p6 6 6 (6 06086pv@6зH60P6X6`6@6M60;6 =@6H6jP6X6@6K6K66i6`66 666 6 (6$0686'@6H60*P6X6`{`6h6p6x666 "6@-6M6H6}6P6`,6p662 6' 6) (6@ @6 H6P6 X6#`6h6&p6x6 )6`6p+6 6s66 6@66h66pg6 6 6 6p 6p 66w 6`(6p06P860@66M6M6 6d606a6P6 60 6 6 (6` 666f66@c66 6 6` 6` 66P{666, 6@(6X0686`@6`<H6P6 X6P6 `60, h6, p6" x66P6p66066P66360666k6P66 66"6r 6(6m06н86 @6@ H6 P6 X6`6yh6Pp6x6@,66 6PA66666  6P 6 6 6 6I 6 6` 6@ 6( 6 0 678 67@ 6@8H 68` 6h 6{p 6@x 6` 6 6  6d 6 6@a 6 6 6 6` 6 6 6  6`n 6` 6@ 6 6  6` 6@5 6P6@ 6H 6` P 6cX 6` 6`h 60p 6p x 6 6 6 6@ 6` 6l 6Ь 6 6` 6`  6 64 6@6 64M 6@ 6 6 6 6` 6 6@a 6A 67 6@8 6 . 6@ 6pd 6 6@ 6 6( 6 @ 6H 6P 60X 6` 6h 6p 6T x 60@ 66 66 6, 6 6d 6 6 6@ 6  6p 6  6p 6% 6t 6 6Po 6 6 6 ( 6 0 6 8 6@ 6dH 6PP 6X 6p` 6Ph 6 6 60 6 6 6v 6 6E 6 > 64 64 6p* 6 6c 60 6` 666X6L6L6L6L 6(6}0686`@6kH6P6@7 X6< `6p2 h63 p6( x66PX6@6p606606@!626 66P6s6`66P_66p) 6; 60 (6p1 06P' 86@6TH6PP6 X6`6h6p6P x61666B6`v66'6@66/ 6% 6@& 6p 66|6P6p} 6@(606`86@6-H65`6@h6 ep6x666666`f66@666P6 6h6666`6 6 (6006(86x@60H6`sP6X6 `6@ h6 p6 6L66j66`6S66 6p9 6P/ 6/ 6% 6 6_(600686@6H6P6pX6P0`6666a666G66 67 6- 6P. 60$ 66\60666`6 66 / 65@6PH6p|P6X66sL6p 6@e66`b6 6  6 6 6 (6 `6h6 p6dx66@a66 6 6` 6 6 66q6666@ 66@56P6 6(6` 06c86@6`H60P6p X6 `6 h6 p6@ x66p6666 6 646@660 6@66`"66@&6 6( 6(6*06`86Pr@6H6PP6 X6`6`h69p6:6VL6EL86?Lx6 M6M66O66606664 6* 60+ 6! 6 6M(606`86@6H6P6X6-`65666` 6#66&660)6 6+66t66 60L`6(L6K6K6`6 k666L6@6 6p66l6`6 6 6P 6 6P6 x 6(606`86P@66L6 L6@666j6С66p66p+ 6 (6! 06 @6H6*P6@_X6`6h6p6x6' 6@ 6 6 66`6S666Ћ6 6" 6 6  6P 86K`6K6K6K86Kx6K6K666P+60z6P60u66p 6  6  6  6 6>( 6~0 6`8 6@ 6H 6 P 6`6X 66` 66 6 6 6@ 6 6 6`  6# 6` 6' 6 6) 6` 6`x 6 6@ 6,!6!6!6 !60(!6`0!68!6e@!6H!6cP!6X!6 `!6 h!6 p!6 x!6!6w!6@!6!6 !6!60!6-!65!6 !6!60"6M"6O"6M"6P "6O@"6MH"6OP"6MX"6P`"6O"6M"6O"6O"6M"6P"6P"6 2#67@#6H#67#6&6#6`$6`$6 Ph$6V$6P$6`%$6P$6P%$6P$6@%%6#P%60%(%6$P0%66P%6JX%6p%x%6*P%67%6 N%67&6N&6`} &6N(&6|@&6tNH&6 |`&6POh&6&6qM&68&6&6&6&6&6&6'6'6@@'6@P'60'6'6 '6@ '60'6 (60(6(6 (6((6`(6p(6p(6(6)6@)60)6 ()600)6@8)6@)6H)6)6)6)6Ў)6`  *6(*60*68*6@*6H*6`P*6X*6 `*6`h*6*6*6+6+6`@+6@H+6 P+6X+6`+60h+6p+6x+6+6+6p+6 +6(,60,6`,6h,6p,6x,6p,6,6`,6P,6,6,6,6,6 H-6P-6`-60-6 -6 -6-6-6-6-6p-6-6~.6`.6@h.6@p.6 .6y.6{.6}.6`.6p.6`.60$.6.6.6p.6.6i/60k/6pl/6m/6n /60/6@/6/6p/6o/6q/6s/6/6pu/6@1/6/6060060606b 06@c(06d006e806g@06 P0606w06p06i06k06m06161616p%16 16 (16016816Z@16P[H16\P16]X16_`16Pp161616 26_26a26c26 26pe(26/026826@26PH26P26X26 R`26`Sh26Tp26Ux26 W262626g26  36Y(36[036]836@36H360P36&X36 `36P h36p36x36`J36K36L36 N36`O363646460@46OH46QP46SX46`46Uh46.p460x46p46 46 46` 46B46C46 E46`F46G4646 (56W056@`56Ih56Kp56Mx565656P56`56565656@56:56;560=56p>56?56 56@H66P66P660A660C66 E66 66 G66p,6666066p6666 66266466@56666677676`h76pp76`76P;76@=760?76p7676p76'76P767676@76*86,86P-86.86/ 86008686 86p8628648668686886*86p!86 9696`9696" 96 $(96`%096&896'@96P9696P96P5X5 `5h5p5x55"5(5.5/555565<5>5?5@5B5D5E5I5T5V5[5l5o 5q(5y05z85{@5}H5P5X5`5h5p5x5555555555555555555555555r5y5}555L5 5 5 5 555 5(50585@5H5qP5X5`5h5p5x555%55 5!54555#55$5%5B55&55'5v5!5) 5*(505+85,@55H5-P5X50`51h52p53x54575)585955:5I55`5O5#5;55=5A55C555F 5G(5>05H85J@5KH5LP5MX5N`5Oh5Pp5Qx5R55]5S5U5W5X5Y5Z5\5]55^5_5M5`5a5b55c5d 5e(5f0585g@5hH5iP5jX5k`5dh5mp5x5n5p5r5s5t5u5v555w5x5y5n5|5~55555Q5 5(50585@5H5xP5sX5`5h5p5x555555555555555555555u 5(50585~@5H5P5X5`5h5p5x555555555555555555555 5(50585@5H5P5X50`5h5Gp5{x5555555555=555555555$55 5H(50585@5H5P5X5`5h5p5Yx555555555555|555555555 5(50585@5H5P5X5.`5h5p5x555-555555555555555555T 5(5^05&85@5H5P5WX5`5h5p5 x5 5 5 5"5 555555555p555(5555 5(505w85@5H5HH! 5HtH55%5hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQ%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%}4D%u4D%m4D%e4D%]4D%U4D%M4D%E4D%=4D%54D%-4D%%4D%4D%4D% 4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4D%4DSAt1ЉƒSE1E1AAADDEDDEDDEDDED DED @DED @DED@DED DEDDEEttA@1A D1Et tA΁ltAtEtAB@tA tA@tAtAtA tAtA@tAtt@tA@tA=v,@u;EttAtA DJ5[5J5AAAn%E1A=AA nAJ5E1ɅuvSDDAAD։ljAA AAGenutAAutht5I5D[DÃD‰E1eI5ՃtD‰E1GI5D wH=MOHcH>I5A I5 wI5 H5 H5H5cH5TH5|/H5 D ڄH=NHcH>MH5 HH7H5(H5HHH5HHG5wHHG5aH HG5KH HG55G5&HHG5HHG5pG5HHZG5KG5@G5/vOw-'G5 G5 G5F5 @H=9&5H2&5H9tHF4Ht H= &5H5&5H)HHH?HHtH4HtfD=%5u+UH=4Ht H=n4d%5]wl$DfT4$T5$@.z7f.{f/w q$(fu(f. H$fDY<$Y0$f.z6ff.{ff/w "$f(Duf(f #fDY#Y#l$z,{wDul$p#ff.@l$-#ff.@l$-"ff.@"WGWFff.GFf~"fWGfWFfGFf/>o~ff.f/>o~ÐUSLHH4ooHhHHt8~*MHSHLDHHHHHBH9u1H[]øHG HHHG(HH1Aff.ATHH5@3UHSH0dH%(HD$(1HL$HT$Hl$ LD$ H|$X`L$DD$ B HHTH5 5HeD$ |$kC0{ljCHT4{HcHC HHC`HChHCpHCxHǃHǃ+HHHcS1HHH2ǃH|$HHH5'2HRHHtHT$ Ht$H3HtHD$ H1HD$DcDAD$)ЅHT$ DEAD$HH|gHCPH"HD$HHD$T$HCXHCPT$ PHT$HPHSPHJHK(HBHC(KHPHS@~1fHc29CHS@IcHt$HHT$ H)H (vectorHHD$ HH0@izedfP HK8HtHmtUH6HCHHL$(dH3 %(HH0[]A\fHy4H50H8f.1@HEHP0@HtHmu HEHP0f HfDH4 H541H81ZHD@|$l$D$ fD$l$l$ff.f(%Hf(fTf.vH,ffUH*fVf(ff.@d(%(T.v,fU*V(SHHH0dH%(HT$(1Hppp0.foD$ foL$0H ))KHD$(dH3%(uH0[|ff.OSH:K[ff.@S~Hf[fSHHH0dH%(HT$(1Hppp0^foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fwSHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fHl$ wH<$PP<$ZY,$ff.ffQf.wf(HL$jL$Hf(ff.fQ.w(HL$ L$ H(ff.SHHH0dH%(HT$(1Hppp0.foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSH:K[ff.@S~Hf[fSHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[,ff.OSHK[ff.@S~Hof[fGl$D/>o~ff.ff(HfTf.vXfUf(\fVf~` f(f(fTf.vXfUf(\fV_f(fTf.vXfU\f(fV^Ð(iT.vXU(\Vff.@ (((T.vXU(\V_(T.vXU\(V^ff.UHSHiHtDHHHvH+tH[]fHSHD$HR0HD$H[]DH1[]fH4~~SHf[DHtWHtRUHSHHt,tHHH[]f.HEHH[]ÐH1[]1ff.f7G7'GSHHH0dH%(HT$(1Hppp0>foD$ foL$0H ))KHD$(dH3%(uH0[ff.SHHH0dH%(HT$(1Hppp0foD$ foL$0H )+)K;k{HD$(dH3%(uH0[jf.SHHH0dH%(HT$(1Hppp0NfoD$ foL$0H )+)K-;k{HD$(dH3%(uH0[fDOSHK[ff.@OSHZYYK[ff.@OSHRYYK[ff.@S~H/f[fS~Hf YYC C[ff.S~Hf{ YYC C[ff.7GWUHSHHVxHHDHH[]DH1[]ff.@UHSHHxHHDHH[]DH1[]ff.@|$l$D$fD$l$l$fdf(fTf.v3H,f%fUH*f(f(fT\fVf.(yT.v,,f%UU*((T\V@SHHH0dH %(HL$(1Hvvv6ppp0foD$@foL$PH@))KHD$(dH3%(uH0[OSH^K[fDGgSHHH0dH%(HT$(1Hppp0^foD$ foL$0H ))KHD$(dH3%(uH0[ff.SHHPdH%(HD$H1/|$ oH|$0t$8t$8t$8t$8foD$ foL$0H ))KHD$HdH3%(uHP[uDOSHZK[ff.@ <SHYYOK[S~H_f[fSHH YYGf~fH~H H HD$~D$fH[DWSHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ ff.OSHK[ff.@S~Hf[fwW'SHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fUHSHHw7|$ssXZl$}ss-l$ }H8[]ff.f'UHSHH7D$CYD$\ ECZYD$EH[]UHSHHD$ CYD$ \M EC*YD$ EH[]|$l$D$fD$l$l$ft f( fTf.v3H,ff(% fUf(H*fTXfVf.$ ( T.v,,f(%b U(*TXV@G''SHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[f'wUHSHHw/wH<$|$ +XZ<$ss.Y^}l$<$}}H([]wUHSHHXO X D$C.T$Ef(EH[]ff.wUHSHH XO X D$ C.T$ E(EH[]ff.@SHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fWgSHHH0dH%(HT$(1Hppp0foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHjK[ff.@S~Hf[fGSHHH0dH%(HT$(1Hppp0>foD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fgSHHH0dH%(HT$(1Hppp0NfoD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fSHHH0dH%(HT$(1Hppp0NfoD$ foL$0H ))KHD$(dH3%(uH0[ff.OSHK[ff.@S~Hf[fATHH4H5US1H L 4dH%(HD$1HL$LL$ktMH|$Ld$I|$HuXHX H4HhHhHHHH 4ID$HHHT$dH3%(Hu'H []A\fDH4H5ZH8{ff.HtWHtBUHSHHtTuHEHH[]fHHH[]fHH1Ht HHÐ1@HtGH>t)uH4HHDH4HH1Hf1ff.fHl$ l${w sRHuH|$H<$H<$l$0H H|$ H<$fH<$l$@H Hf.{&f(\fHf/w f/sJHDuX~DfW(T$YxT$HXÐL$YPL$HXf.{'(\fH/w#/sNHfuXDWyT$ YT$ HXfL$ Y|L$ HXfHl$ l${w sRHuH|$H<$ZH<$l$0H H|$ H<$&H<$l$@H Hff.f.{&f(\fHf/w f/sJHDuXDfW8T$譼T$HXfL$腼L$HXÐ.{'(\fH/w#/sNHfuXDWT$ )T$ HXf.L$ L$ HXÐAWH=4AVAUATUSHmHHH=5HHmQH53H*HmIMbQHt4I9D$QP1LGH-p4HEI,$HEH>Q= HEsP HEPPPH=24-x?HH=411I^IHjO]HtHSHbOHH[]A\A]A^A_HEHP0ID$LP0/LH5B LNIm+OHuH=) H5# LIHImu IELP0HH YHB4H4Hd4H -5H~5H5@ tH rjH 4@ tH H 4@ tH ZH 4@ tH &hH 4@ tH H 4@ tH ~6H 4@ tH J H 4@ tH V H 4@ tH  H 4@ tH H 4H 4L=H R|L=4L=tL}H5HoH=H4H5ځLӂH4H5L>H4HL H4HL5$L=U4L=L-_H4HL=:4L=Ht4HL=&4L=H`4HyL=4L=L54L54L5L-4H 5L5H=5H55L5L5L 5H5H 5L5H=5H55L5L5L 5H5L=4L=L=4L=L= 4L=L=4L='L=4L=L=4L=L=4L=L=4L=oL54L54L5L=k4L=L554L564L5L=P4L=L54H K5LL5H=M5H5N5LO5LP5L Q5HR5H 5L5H=5H55L5L5L 5H5H [5L\5L=]4L=L=W4L=L=Q4L=L=K4L= L=E4L={L=5L=|L=5L=L=4L=dL=5L=VL=4L=L=5L=*L=34L=44L=L=.4L=L54L5L=4L=L544L554L5}L=4L=XH=a5H5b5Lc5Ld5L e5Hf5L55H 5L5H=5H55L5L5L=4L=L 5L=4H5@ tL=-xL=4@ tL=L=4@ tL5L54@ tL=L=4@ tL5mL54@ tL=LL=4@ tL5% L54@ tL= L=4@ tL5 L54@ tL=  L=4L=4L-|4L=u5@ tL5}L54@ tL=L=4@ tL5"L54@ tL=dL=4@ tL5pL54@ tL=TL=u4@ tL5x+ L5i4@ tL=" L=]4@ tL5! L5Q4@ tL= L=E4L=4L-?4L=85@ tL5L5t4@ tL=L=h4@ tL51L5\4@ tL=L=P4@ tL5sL5D4@ tL=\L=84@ tL5;1 L5,4@ tL=G( L= 4@ tL5' L54@ tL= L=4L=i4L-4H c5L=5L=L=N4L=O4L=L=I4L=rL=C4L=L=4L=4L=L=4L=aL5H=5H55H5H 5L 5H= 5H5 5L=4H 5@ tL5ZL54@ tL=zL=4@ tL5L54@ tL=TL=4@ tL5L54@ tL=$L=4@ tL5vL54@ tL= L=s4@ tL5 L5g4@ tL= L=[4L=H4L=4L=4L=PL=4L=L=4L=L=4L=fL=4L=L=4L=L=c4L=d4L=L=^4L=L=X4L=YL=R4L=L=L4L=L=F4L=H 5L 5H= 5H5 5L 5L 5L 5H 5H  5L 5H= 5H5 5L 5L 5L  5H 5H 5L=Q4L=R4L=cL=L4L=L=F4L=L=4L=4L="L=4L=L=4L=.4L7 5H=8 5H59 5H: 5H 5L 5H= 5H5 5H 5L-`4L= 5@ tL5\L54@ tL=L=4@ tL5bL54@ tL=PL=4@ tL5L54@ tL=rL=4@ tL5> L54@ tL=< L=4@ tL54 L54@ tL=X2 L=4L=H S5L5L=4L=4L=WL=4L=9L=4L=L=4L=ML=4L=OL=4L=1L=j4L=k4L= L=e4L=L=_4L=L=Y4L="L=S4L=dL=M4L=L=4L5H=5H55L5L5L 5H5H 5L5H=5H55L5L5L 5H5H 5L5L=Y4L= L=S4L=L=M4L=L=G4L=PL=A4L=L=;4L=L=4L=4L=_L=4L=AL=4L=tL55L5uzL=5L=WL55L5 L=b5L=uL5d5L5{L=n5L=L5p5L5aL5B5L5L=4H=5H55L5L5L 5H5H +5L,5H=-5H5.5H/5H 5L5L=4L=4L5|4L5L5v4L5L=H5L=)L55L5+L=d4L=e4L=sL55L5pL=4L=tL54L5qL=4L=L54L5L=!4L=}H=5H55H5L-4L-4L-(4L54L=j4@ tL5 L54@ tL=YL=4@ tL5jL5v4@ tL=L=j4@ tL5*L5^4@ tL=yL=R4@ tL5U L5F4@ tL=!S L=:4@ tL5K L5.4@ tL=iI L="4@ tL5EL54@ tL=L=4@ tL5pL54@ tL=L=4@ tL52L54@ tL=L=4@ tL5}b L54@ tL=Ia L=4@ tL5X L54@ tL=W L=4L=nL5oL=4L=L=4L=4L=YL=4L=KrL54L5=qL=4L=OnL54L5L=Z4L=CL54L5eoL=~4L=4L=qL514L5pL=34L=L54L5L=W4L=zL5A4L= 4@ tL5VL54@ tL=yL=4@ tL5L54@ tL=QSL=4@ tL5L54@ tL=i"L=4@ tL5L5v4@ tL= L=j4@ tL5 L5^4@ tL= L=R4L= xL=L4L=e4L=4@ tL5{L5R4@ tL=eL=F4@ tL54L5:4@ tL=mL=.4@ tL5yL5"4@ tL=%YL=4@ tL5, L5 4@ tL= # L=4@ tL5I" L54@ tL=U L=4L=4L-4L=4@ tL5ܣL54@ tL=L=4@ tL5sL54@ tL=L=4@ tL57L54@ tL=ȍL=4@ tL5l L5u4@ tL=l L=i4@ tL5 c L5]4@ tL=(c L=Q4@ tL5L554@ tL=L=)4@ tL5yL54@ tL=xL=4@ tL5?L54@ tL=@L=4@ tL5y L54@ tL={ L=4@ tL5o L5ջ4@ tL=`q L=ɻ4L=RH 4L5djL=4L=4L=L=4L=L=4L=SL= 4L=L=4L=L=4L=L=4L=4L=L=}4L=L=w4L=XL=q4L=L=k4L=L=e4L=nL=4L(4H=)4H5*4L+4L,4L -4H.4H 4L4H=4H54L4L4L 4H4H 74L84L=q4L=L=k4L=L=e4L=L=_4L=XL=Y4L=L=S4L=lL=ո4L=ָ4L=GL=и4L=)L=ʸ4L=L=ĸ4L==L=4L=L=4L=qL=4L=4L=LkL54L5iL=4L=L54L5BhH=K4H5L4LM4LN4L O4HP4H 4L4H=4H54L4L4L 4H4L=i4L=kL=4L=tL=U4L=L=4L=4L=jL54L5hL=4L=ekL54L5L=4L=)L54L=4@ tL5.L54@ tL=:L=4@ tL5{L54@ tL="L=4@ tL5nDL54@ tL=L=s4@ tL5v L5g4@ tL=" L=[4@ tL5y L5O4@ tL=j| L=C4L=L-u4L=4@ tL5ML524@ tL==L=&4@ tL5L54@ tL=IL=4@ tL5aL54@ tL= L=4@ tL5iL54@ tL=u L=޴4@ tL5 L5Ҵ4@ tL= L=ƴ4L=pL=4L=L=*4@ tL5=L54@ tL=IL=4@ tL5uL54@ tL=L=4@ tL5LL5~4@ tL=)L=r4@ tL5U L5f4@ tL= L=Z4@ tL5 L5N4@ tL=I L=B4L=L-t4L=4L=qL=4L=HL=4L=L-S4L-4L=4@ tL5ZL54@ tL=L=4@ tL5L54@ tL=\lL=ծ4@ tL5L5ɮ4@ tL=,L=4@ tL5` L54@ tL=l L=4@ tL5 L54@ tL= L=4L=ޔ4L-߮4L=X4@ tL5 IL5|4@ tL=L=p4@ tL5L5d4@ tL=CL=X4@ tL5+L5L4@ tL=L=@4@ tL5L544@ tL= L=(4@ tL5 L54@ tL= L=4L=L5mL+4L=4L=L=4L=/L=4L=Q4L4L 4L54L=}4@ tL5XL5y4@ tL=L=m4@ tL5VL5a4@ tL=L=U4@ tL5xL5I4@ tL=$iL==4@ tL50: L514@ tL=7 L=%4@ tL5x0 L54@ tL=. L= 4L=ƹL5L4L=4L=:L=4L=L4L54L5lL=4L=paL=y4L=RL5K4L5bL=4L=4L=L5P4L5dL=4L=L5<4L5dL=4L=L5(4L5fL=4L=+L54L5miL=4L=L54L5jL=z4L=sL54L5eL=4L=4L=L5Q4L5"L= 4L=DLM4L N4L-4H X4LY4H=Z4H5[4L5ԧ4L5L=n4L=o4L=`H94H 4L4H=4L=M4H54L5G4H4@ tL5+?L5t4@ tL=L=h4@ tL5L5\4@ tL=_4L=P4@ tL5+L5D4@ tL=GL=84@ tL5CL5,4@ tL= L= 4@ tL5 L54@ tL=W L=4L5YL="jL-4L54L5E4L=4L54@ tL5RxL54@ tL=L=4@ tL59L54@ tL=L=w4@ tL5bL5k4@ tL=TL=_4@ tL5& L5S4@ tL= L=G4@ tL5 L5;4@ tL= L=/4L54L=L-"4L=4L=L54L5L5o4L5p4L5L5r4L5L5t4L5eL5>4L5?4L5@L=I4L=bL5+4L5L==4L=L54L58L= 4L=L54L5 L=4L=H G4LH4H=I4H5J4LK4LL4L M4HN4H 4L4H=4H54L4L4L 4H4L54L54L5YL54L5L=4L=L54L5/L=4L=aL54L54L54L5żL=ޠ4L=wL54L5IL=4L= L5ܟ4L5H 4L4H=4H54L4L4L 4H4H 4H ϟ4LП4H=џ4H5ҟ4Lӟ4Lԟ4L=m4L Ο4L5g4Hȟ4@ tL58L5d4@ tL=gL=X4@ tL5CL5L4@ tL=-L=@4@ tL5L544@ tL=L=(4@ tL53L54@ tL= L=4@ tL5{ L54@ tL=G L=4L=eL5L=#4L5\4@ tL5KL5Ȝ4@ tL=L=4@ tL5L54@ tL=RL=4@ tL5L54@ tL=L=4@ tL5?L54@ tL=K L=t4@ tL5 L5h4@ tH H\4H4L4L5mL4H4H"H4H4HH4H߸H4HH4HsH4HH~4H׷H4H4HH4HH4HfH4H(H4HL4L4L-͛4H 4L4H= 4H5!4L 24H34H 4L4H=4H54L 4AH{4H4H4jHd4HݵH4H4HxH4H:H{4HPAVjH 4L4AH=4H=4H54H54H{4H^4L-4`H LLIHcImu IELP0HL5ojAPAHٕ4AVH54H=ɺ4j_H LLIHNbILImu IELP0HwL5jAPAH%4AVH54H=4j>_H LLIH:qIL{Imu IELP0H[L5jAPAHQ4AVH54H=4j^H LLIHcILImu IELP0HL5+jAPAH͓4AVH5Է4H=4jV^H LLIH衐Imu IELP0H9L5jAPAHW4AVH5.4H='4j]H LLIH;Imu IELP0HL5njAPAH4AVH54H=4j]H LLIHՏImu IELP0H- L5jAPAHk4AVH54H=4j$]H LLIHoImu IELP0HL5jAPAH4AVH5<4H=54j\H LLIH Imu IELP0HaL5RjAPAH4AVH54H=4jX\H LLIH裎Imu IELP0H%L5jAPAH 4AVH54H=4j[H LLIH=Imu IELP0H},L5jAPA Hs4AVH5*4H=#4j[H LLIH׍Imu IELP0Hg2L5<jAPA H͏4AVH5d4H=]4j&[H LLIHqImu IELP0Hi9L5jAPA H'4AVH54H=4jZH LLIH Imu IELP0H?L5jAPAH4AVH54H=4jZZH LLIH襌Imu IELP0HBL5&jAPAH#4AVH5R4H=K4jYH LLIH?Imu IELP0HwFL5jAPAH4AVH54H=E4jYH LLIHًImu IELP0H1JL5ijAPAH4AVH5f4H=4j(YH LLIHsImu IELP0HNL5jAPAH4AVH54H=4jXH LLIH Imu IELP0HTL5;jAPAH#4AVH5ڬ4H=4j\XH LLIH觊Imu IELP0HWL5@jAPAH4AVH544H=m4jWH LLIHAImu IELP0Ha[L5jAPAH74AVH54H=4jWH LLIHۉImu IELP0H_L5jAPAH4AVH54H=4j*WH LLIHuImu IELP0HdL=tjAPAH4AWH54H={4jL-TVH LLLIHI.u IFLP0HhL=ujAPAHh4AWH5Ϩ4H=4jQVH LLIH蜈I.u IFLP0H rL=jAPAH4AWH5*4H=c4jUH LLIH7I.u IFLP0H0uL=jAPAH~4AWH54H=4jUH LLIH҇I.u IFLP0HyL=jAPAH 4AWH54H=4j"UH LLIHmI.u IFLP0H&~L=)jAPAH4AWH5{4H=4jTH LLIHI.u IFLP0HiL=jAPAH4AWH5֥4H=4jXTH LLIH裆I.u IFLP0HL=qjAPAHz4AWH54H=ʤ4jSH LLIHfIL0I.u IFLP0LHjAPAHDž4ARH54H=4jL=>VySLH LLIHL超I.u IFLP0LHjAPAH 4ARH5d4H=]4jSL]H LLIHLCI.u IFLP0L/HjAPAHZ4ARH54H=j4jRLH LIHLׄI.u IFLP0LHɤjAPAH΃4ARH5e4H=^4j'RLH LIHLkI.u IFLP0LbHjAPAH"4ARH594H=24jQL"H LLIHLI.u IFLP0LHjAPAHo4ARH54H=4jHQLH LLIHL腃I.u IFLP0LHjAPAH4ARH5S4H=l4jPLRH LIHLI.u IFLP0L0HjAPAHh4ARH54H=4jiPLH LIHL譂I.u IFLP0LHojAPA H4ARH54H=4jOLH LIHLAI.u IFLP0LeHjAPAHh4ARH5/4H=h4jOL%H LIHLՁI.u IFLP0LHjAPAH4ARH54H=4j%OLH LIHLiI.u IFLP0LHjAPAHp4ARH54H=4jNL\H LIHLI.u IFLP0L6H?jAPAH~4ARH5K4H=4jMNLH LIHE9LIL胀I.u IFLP0LHMjAPAHj~4ARH54H=ʘ4jMLH LIHLI.u IFLP0L\HajAPA H}4ARH54H=4jgMLH LIHLI.u IFLP0LHjAPAH"}4ARH54H=Җ4jLLH LLIHL8I.u IFLP0LHjAPAHo|4ARH5f4H=4jLLMH LLIHL~I.u IFLP0L%HwjAPAH{4ARH54H=4jLLH LIHLY~I.u IFLP0LHjAPAHp{4ARH5G4H=4jKL}H LIHL}I.u IFLP0LWHjAPAHz4ARH54H=T4j=KLH LIHL}I.u IFLP0LHjAPAHxz4ARH54H=4jJLH LIHL}I.u IFLP0LH/jAPAHy4ARH54H=4jeJLJH LIHL|I.u IFLP0L(HkjAPAHy4ARH5W4H=p4jILH LIHL=|I.u IFLP0LHjAPAHx4ARH5K4H=4jILH LLIHL{I.u IFLP0L`HdjAPAH!x4ARH584H=4jIL H LIHL^{I.u IFLP0LH"jAPAHuw4ARH5,4H=4jHLH LLIHLzI.u IFLP0LH'jAPAHv4ARH594H=ҍ4j;HLXH LLIHLxzI.u IFLP0L1H,jAPAHv4ARH54H=4jGLH LLIHLzI.u IFLP0LH4jAPAH\u4ARH5S4H=̊4jUGLH LLIHLyI.u IFLP0Hc<L=TjAPAHt4AWH54H=94jFH LLIH-yI.u IFLP0H@L=jAPAH$t4AWH54H=4j}FH LLIHTILxI.u IFLP0HDL=jAPAHqs4AWH54H=4j FH LLIHfHILGxI.u IFLP0HGL= jAPAHr4AWH54H=n4jEH LLIHwI.u IFLP0HKL=jAPAH9r4AWH54H=I4j2EH LLLIHvwI.u IFLP0HOL=cjAPAHq4AWH5Ŀ4H==4jL5$EDH LLLIHwImu IELP0HkPL=jAPAHp4AWH54H=)4jRDH LLIHvImu IELP0HVL=jAPAHKp4AWH54H=4jCH LLIH7vImu IELP0H/ZL=4jAPAHo4AWH54H=]4jCH LLIHuImu IELP0Hy^L=jAPAHGo4AWH5^4H=ׁ4j CH LLIHkuImu IELP0HbL={jAPAHn4AWH5x4H=4jBH LLIHuImu IELP0HMhL=jAPA Hm4AWH54H=+4jTBH LLIHtImu IELP0H7mL=jAPAHm4AWH54H=4jAH LLIH9tImu IELP0HpL=jAPAHl4AWH54H=~4jAH LLLIHsImu IELP0H|uL5jAPAHrl4AVH5y4H=}4jAH LLIHfsImu IELP0HxL5jAPAHk4AVH5S}4H=̷4j@H LLIHsImu IELP0HL5=jAPAHk4AVH5|4H=&4jO@H LLIHrImu IELP0HL5jAPAHk4AVH54H= |4j?H LLIH4rImu IELP0HL5ojAPA Hj4AVH5{4H=Z{4j?H LLIHqImu IELP0HސL5jAPAHj4AVH5;4H=y4j?H LLIHhqImu IELP0H8L5jAPAH>i4AVH54H=x4j>H LLIHHILpImu IELP0HLL59jAPAHh4AVH5!x4H=Z4jC>H LLIHpImu IELP0H6L5jAPAH4h4AVH5{w4H=4j=H LLIH(pImu IELP0HL5xjAPA Hg4AVH54H=v4jw=H LLIHSILoImu IELP0H4L5jAPAH g4AVH5v4H=:4j=H LLIHNoImu IELP0E uH5LIHoImu IELP0tH5%LIHnImu IELP0tH5GLIHnImu IELP01H5+H#tH5"HtH5HsH5 HsH5HsH5Hs H5Hs1H5HsH5HsH5Hrs H5H^sH5HJsH5H6sH5H"sH5HsH5HrHH5H4o H5Hr`#sH5HHlIsH5HHlfrH5HHlrH5|HHlrH5cHHylH5Lj{H5LHlH5&LI{H5LI7{LIHE@LH5LElLH5?L3lHkH=tH=Hѭ4tH=H4tH=H4tH=H4tH=He4tH=HJ4tH=e4H.4H=H4H=24԰H=4ưH=4H=4饰D{錰fDH9b4H5,H8|郰DIELP0ưfHb4H5*H8j|I,$uID$LP0{qH(H`4H5<H8,|  H5Ha4H81_p H5Hja4H818pHWa4H5xH81piH:a4H5+H81pLH_4H5H8{1HRa4H5H8k{H`4H5H8P{f.AWAAVIAUATIUHSH(DodH%(H$1HG DH$H0L_4L$It$(LL\$IIcH4$L$HL׹Ic^ mL\$LS_4IDxgHcȉHHI H H)(f.HDHHDŽH9t!H|uHH\HH9uILEtJI|$ATE1LDjLLD$ AZYH$dH34%(u;H([]A\A]A^A_fDHxE1Mt$8IA|$0vAVAUATUSHHLZ DjdH%(H$1kDͅ~gLr(DgE1'JMQJDŽM9t6MB<uA9HcMQIJIJM9uLH5 A9THs8L-]4H$HIELPjS@RLKLLD$IXZMHIEHL#LIE11ҾLHHIELHuI$IELHyZI,$u ID$LP0H+u HCHP014D9u{G1ɅLɀ<tI<u@LIH9uHH$dH3<%(HH[]A\A]A^fLH5H\41H81k뮐LH5F@LH5.I,$NID$L1P0tI,$1ID$LP0YsAWAVAUIATUSHL|$PHtaHӺEIHzE1ɅAHtH+uHCDL$ HP0DL$ }HMD[L]LA\A]A^A_HLD[]A\A]A^A_WAWAVAUIATUHSH8DvH<$LD$LL$dH%(H$(1IEHAVIT@8tuHH9p8UH~Z4HT$H5BE1H81EjDH$(dH34%(LH8[]A\A]A^A_@L%YZ41HI$HPHIHgHX L\$ IcֹLHHhIE11f.A|tH<HHA9I$LH<$L\$T$T$L\$ H$Hx pI$H|$HI/u IGLP0HEIHH9vL%GY41HI$HPHIHtYI_ L\$ IcֹLHHgI@HX4HT$H5ݥH81hI/u IGLP0E1;E/AFHDfDHHH9u Iw(EAN1HA|tIMLhGA>LL|$8D$M4MG}LID$7G}LD$(%G}LD$G}LD$ G}LD$F}D$FLH(HD$@HGHHHHHHTEHH HH)Nd=Af} HL$0IT$,HT$ pFXD$A<$D$ZFXD$|D$DFXD$(A<D$(.FXD$|D$FXD$ A<D$ FXD$B|5D$EXD$C<4D$EHL$0HT$ LT$,HHIXL9|$@L$D$(XL$XD$XT$XD$ XD$XXI9vIHD$HHXf;L$INEL$H\$8XM9wHHLt$HHHLHfLHH)HD$IHBTHd:0IK40MHIHLH HH)HкfDHXX@X<X48ILXlBXBXTXd8LI9wXXXXXXMM9v8LKfEXHEX@HI9wHD$(dH3%(H8[]A\A]A^A_fDIHt$H|$IILTLHt$ ML)MH|$K4D$XD$ED$XD$ ufDHHHXIDEAX$HEAXD$MI9wA{Mff.AWAVIAUIATIUHSLHxdH%(HD$h1HH\*LIMHIH< j/HHl /BlH[H(AlIH<$IHIHH|$HHH HH)H f.(HLIl$|$h,$<$,lB,Bl,lLI9wl$A<$}M9v4HHIDA,$H*A<$mjH}I9wHD$hdH3%(Hx[]A\A]A^A_fIHt$0H|$ IILDLHt$PIL)LH|$@IK> l$ l$@A<$l$0l$P}{?>HjHA,$H*A<$mjH}I9w;AKDAWAVAUATUSHHBH.L'LL*HD$H~,I1fDA<$HMA,fAL|$H9uH[]A\A]A^A_AWAVAUATUSHHBL&L/HoL2HD$M~2I1fDA}HMwHALt$Ll$fA$Ld$H9uH([]A\A]A^A_AWAVAUATUSH(HH.L7H_HD$HBLoHD$HBHD$H~QIE1A>I:;D$ :T$((AYFLt$H\$fAELl$L9uH([]A\A]A^A_ÐAWAVAUATUSH(HH.L7H_HD$HBLoHD$HBHD$H~QIE1A>IG;$G$f(f(A DLt$H\$fAELl$L9uH([]A\A]A^A_ÐAWAVAUATUSH(HH.L7LoHD$HBLgHD$HBHD$H~5I1@AMAHALt$Ll$A$Ld$H9uH([]A\A]A^A_ff.fAWAVAUATUSH(HH.L7LoHD$HBLgHD$HBHD$H~EI1@ffHAZAZMAfZLt$A$Ll$Ld$H9uH([]A\A]A^A_ff.fAWAVAUATUSHHBL&L/HoL2HD$M~*I1fDAEHMAEHl$I9uH[]A\A]A^A_f.AWAVAUATUSH(HH.L7LoHD$HBLgHD$HBHD$H~5I1@AMAHALt$Ll$A$Ld$H9uH([]A\A]A^A_ff.fAWAVAUATUSHHBL&L/HoL2HD$M~,I1fDAuHAuMA}Hl$XZI9uH[]A\A]A^A_AWAVAUATUSH(HH.L7LoHD$HBLgHD$HBHD$H~;I1@AuHAuAvA6ALt$(A<$Ll$0Ld$8H H9uH([]A\A]A^A_AWAVAUATUSH(H.L/dH%(HD$1HBLgL2H$HD$HD$H~.I1DIUHLH|$MHT$AL$$H9uHD$dH3%(uH([]A\A]A^A_HCAWAVAUATUSHXHL?dH%(HD$H1HHoLbHD$H~~HD$0IE1HD$HD$ HD$ffHt$H|$IAZD$ fAZGD$(AffL|$ZL$0MZT$8ULL9uHD$HdH3%(uHX[]A\A]A^A_aBAWAVAUATUSHXHH/dH%(HD$H1HLgLoHD$HBHD$HBHD$H~[HD$@IE1HD$ HD$8HD$(HUIHt$ H|$(HT$8I$HT$@LAHl$Ld$Ll$L9uHD$HdH3%(uHX[]A\A]A^A_AfAWAVAUATUSHxHH/dH%(HD$h1HLgLoH$HBHD$HBHD$HHD$PIE1HD$HD$@HD$ HD$0HD$(f.fHT$Ht$ IZED$0fH|$(ZED$8fAZ$D$@fAZD$D$HAffH,$ZL$PAMLd$ZT$XAULl$L9tHD$hdH3%(uHx[]A\A]A^A_`@AWAVAUATUSH8H.L/dH%(HD$(1HBLgL2H$HD$HD$H~0I1DAoEHLMH|$)D$AL$$H9uHD$(dH3%(uH8[]A\A]A^A_?fDAWAVAUATUSHhHH/dH%(HD$X1HLgLoHD$HBHD$HBHD$H~^HD$@IE1HD$ HD$0HD$(oEILHt$ H|$()D$0Ao $)L$@AHl$Ld$Ll$L9uHD$XdH3%(uHh[]A\A]A^A_>ff.@AWAVAUATUSHHH.HdH%(HD$81HBLoL2H$HD$HD$H~8IE1@foILH|$)D$foKL)L$ AL,$L9uHD$8dH3%(uHH[]A\A]A^A_>>ff.AWAVAUATUSHHH/dH%(HD$x1HLgLoHD$HBHD$HBHD$H~qHD$PIE1HD$ HD$0HD$(@foEILHt$ H|$()D$0foM)L$@fAo$)T$PfAo\$)\$`AHl$Ld$Ll$L9uHD$xdH3%(uHĈ[]A\A]A^A_F=fDAWAVAUATUSHHL.L7H_H$LzM~]I1?DAHtIH;HtH/uHWHD$R0HD$HHL4$LI9tI>HuH=&4AHuH[]A\A]A^A_AWAVAUATUSHHL.L7H_H$LzM~dI1HD11L/HtGH;HtH/uHWHD$R0HD$HHL4$LI9tI>HuH=^%4@H[]A\A]A^A_ÐAWAVAUATUSH(HL&L/LwH$HBLHD$HBHD$M~uH1HHtXHt_I?HtH/uHWHD$R0HD$HL,$Lt$IL|$I9t&I6I}HuH5$4HuH=$4HuH([]A\A]A^A_ff.AWAVAUATUSH8HL&L7LHD$HBHoHD$HBHD$ M~yHL$1L-pQHt$1L.HtTH}HtH/uHWHD$(R0HD$(HHELt$L|$Hl$ I9tI>IHuH=#4@H8[]A\A]A^A_fAWAVAUATUSHXHT$(dH%(H$H1H1HD$ AHID4D$IcHL$0HD$H~!HL$1Lt$@@HIHH9uH|$ LcHD$(Ht$H$Lt$@Hcl$O,H@LHLZLRH~,1A9@A8@8HIMLH9u[ff.@SLLGHOH>HLZLRH~*1A9A8@HIM1LH9u[ÐSLLGHOH>HLZLRH~,1A9@A8@8HIMLH9u[ff.@SLLGHOH>HLZLRH~,1A9@A8@8HIMLH9u[ff.@SLLGHOH>HLZLRH~,1A9@A8@8HIMLH9u[ff.@SLLGHOH>HLZLRH~,1A9@A8@8HIMLH9u[ff.@SHLGL HZLRLHWL9t=M9M~+1D9:@HLL!AIL9u[fMuL9uId1M~5:I@@1fD2@tHLL9u@1[f.L9cHYLH)HH?H1H)H L97LH)HH?H1H9LM1tCH)L9HIGI)H<@t<@A<HH9uLHH9sAfokff.o1o2ftfftfA)0HH9rHL9@4@t<@A4HL9u[HH)HH?H1H)HHփL1HH9vQffoftL2ft2ffudHF f#fofoftftTH ffu7H9wL99t$<tHDLH9Hxu[ÿH)L9IGHt=9t:t1HHH9t<u1LH)&HvL11ff.HLGHGL LZLRH>L9M9QH1fD1@ 0AHLLMH9uHH)HH?H1H)HHƃI1II9vYffoftL0ft0ffЁuhHV f'fofoftftTH ffu7L9rH99u$<uHTHH9HztDMM9I1H~)@ 0<18(HLH9u@1M9ILH)HH?H1H)H L9zLH)HH?H1H9aLI1҃tFAI)I9LHGI)HfD<Au<AE HH9uIML9s:fogfo1o0fftfA)0HL9rHH9<u<@A4HH9uþAI)I9LGMt<9f1Ҁ8[HHI9t <BII)1I1H!LLJHGHH6It%H~1fD:HLLH9ufIuHH)HH?H1H)HH9uHI1Ƀt0AI)I9LIHGI)Hts< HH9uII9v3fo~fff.o:ftf)8HL9rHH9Wf.< HH9uHfLLJHGHH6It%H~1fD:HLLH9ufIuHH)HH?H1H)HH9uHI1Ƀt0AI)I9LIHGI)Hts< HH9uII9v3foneff.o:ftf)8HL9rHH9Wf.< HH9uHfHOHz1HH~f.HHH9uHOHz1HH~f.HHH9uLLJHHWH>It%H~1fD0HL@2LH9ufIuH9tH~1fD4@4 HH9u1H~4@4 HH9ufDAWAVAUATUSHPLLJHL_LIMIzL1LHHHHMHILMHHHH9@MHHHMHILH9@OHELO4@O$LHHO,ILHD$K6HLHD$JfoScHN<HK$H|$L|$N<L)L)HD$JL|$N<L|$L|-HD$JL|$OItEH~8 U1fDff(HL*^,ƈLH9uIuH91H~HBH9HA@H9@HGHHff1f(kZfo%SZHofofD(fD(fD(fD(fD(fdfofD(fD(f`fhfofefDofofDafifofefifafoAfEpEfD^fE^fAfEfAlDfpfE^fD^fAfEfAlfDofafDifofAafAifD(fafpfD^ffD^fAfAflfpfD^fD^fAfAflfofafifofafifaffgHH9HHHHH92f S*f(^,@1HpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9nrff(*^,@qHpH9Erff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHp H9r ff(*^,@q Hp H9xr ff(*^,@q Hp H9Or ff(*^,@q Hp H9&r ff(*^,@q Hp H9r ff(*^f(,H@q H9Bf*^,AHHBH9HGH Hff1f(GVfo%/VHofofD(fD(fD(fD(fD(fdfofD(fD(f`fhfofefDofofDafifofefifafoAfEpEfD^fE^fAfEfAlDfpfE^fD^fAfEfAlfDofafDifofAafAifD(fafpfD^ffD^fAfAflfpfD^fD^fAfAflfofafifofafifaffgHH9HHHHH92f O*f(^,@1HpH9rff(*^,@qHpH9rff(*^,@qHpH9wrff(*^,@qHpH9Nrff(*^,@qHpH9%rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHp H9r ff(*^,@q Hp H9Xr ff(*^,@q Hp H9/r ff(*^,@q Hp H9r ff(*^,@q Hp H9r ff(*^f( hM1fD4ff(*^,@4HH9u 2M14ff(*^,@4HH9ufLHLJHH6It%H~1fDHLLH9uIuH9H~HPH9HWH9HVHH1HfoHH9uHHHH H9t8@9HzH9tx@yHzH9_x@yHzH9Jx@yHzH95x@yHzH9 x@yHzH9 x@yHzH9x@yHzH9x@yHz H9x @y Hz H9x @y Hz H9x @y Hz H9x @y Hz H9xx H@y H9c@AHRHPH9rNHVHvDH1Hf.o  HH9u{1  HH9u1  HH9uff.LLJH6HHIt%H~1fDHL؈LH9uÐIuH9H~HBH9HGH9.HFH H1fHDofofHH9uHHHH H9t:@9HxH9lz@yHxH9Uz@yHxH9>z@yHxH9'z@yHxH9z@yHxH9z@yHxH9z@yHxH9z@yHx H9z @y Hx H9z @y Hx H9z @y Hx H9oz @y Hx H9Xz H@y H9AB؈AH.HBH9HFHH1fHofofHH9uHHHH H9:@9HxH9z@yHxH9L1 و HH9u1 و HH9uLLJHGHH6It%H~1fD:HLLH9ufIuH9H~HHH9HJ@H9@HNH Hfo EL1fHo ftfHH9uHHHHH9u:HyH9bzHy@H9MzHy@H98zHy@H9#zHy@H9zHy@H9zHy@H9zHy@H9zHy @H9z Hy @ H9z Hy @ H9z Hy @ H9{z Hy @ H9fz @ HH9Qz@H?HHH9HNHHfo J1fHfo ftfHH9uHHHHH9:HyH9zHy@H9h1D< HH9u1ɀ< HH9uf.LLJHHWH>It%H~1fDHLЈLH9uÐIuH9H~HBH9HA@H9@HGHH1fvHofHH9uHHHHH9t1@2HpH9qq@rHpH9Zq@rHpH9Cq@rHpH9,q@rHpH9q@rHpH9q@rHpH9q@rHpH9q@rHp H9q @r Hp H9q @r Hp H9q @r Hp H9tq @r Hp H9]q H@r H9FAЈBH3HBH9HGHH1fvHDofHH9uHHHHH91@2HpH9q@rHpH9T1D4@4HH9u14@4HH9uff.LHOL LZHLRH6I9BIt L$Hfoo01HfnT$f`fafpfof`fhf.Aofof`fhfffffofgA4HH9uHHIIH9 AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9yA@AAHBH9`A@AAHBH9GA@AAHB H9.A@ AA HB H9A@ AA HB H9A@ AA HB H9A@ AA HB H9A@ HAA H9A@AADMWM9NAHH~H[.H<II1Ht$IIIHL$L9H,RH)ID$L,Ld-fo-fo.LLDE3fofoHC4;C #f`fhG "HH C +HH A HH A +HH A SHH A IHH C :HHL L G *Ht$HL E HL E *HL E RHL E HL E IHL HL$foD$foT$f`fhfffffgH9fofoHt$D$fsf`fhHL$fof`fhfffffgfofofsf`fhfof`fhfffffgfofofsf`fhfof`fhfffffofgfofofofsf`fhfof`fhfffffofg)|$|$HHILLH9tH!HH9Af.IAI9HIAH9HA@I9@\HFHNT$Hfoe+1HfnT$f`fafpfof`fhofof`fhfffffofgA,HH9uHHHIH9AHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9hAAAHGH9PAAAHG H98A AA HG H9 A AA HG H9A AA HG H9A AA HG H9A HAA H9AAADI{M9lI9YHI@IyI9I9 HAI9H9@  HFH Hfo!)1HAoofofof`f`fhfhfffffofgA4HH9uHHIHIH9A!AHBH9A@aAAHBH9A@aAAHBH9A@aAAHBH9pA@aAAHBH9WA@aAAHBH9>A@aAAHBH9%A@aAAHBH9 A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HBH9vA@aAAef.AAHH9uABCIL9u'HHFHT$Hfo&HHHfnD$f`fofafpfof`fhfoHfof`fhfffffofghH9uIILL9ˆIBH9nAˆAIBH9WAˆAIBH9@AˆAIBH9)AˆAIBH9AˆAIBH9AˆAIBH9AˆAIBH9AˆAIB H9A ˆA IB H9A ˆA IB H9A ˆA IB H9qA ˆA IB H9ZA IˆA L9CAˆA4H+HFHL$Hfo$LHLfnD$f`fofafpfof`fhoHfof`fhfffffofgxH9uHHIH9AAHBH9A@A@HBH9iA@A@HBH9PA@A@HBH97A@A@HBH9A@A@HBH9A@A@HBH9A@A@HBH9A@A@HB H9A@ A@ HB H9A@ A@ HB H9A@ A@ HB H9oA@ A@ HB H9VA@ HA@ H9=A@A@,H#HFHHfo"1HAoofofof`f`fhfhfffffofgA4HH9uHHIHIH9A AHBH9A@aAAHBH9sAA`AAHBH9ZA@aAAHBH9AA@aAAHBH9(A@aAAHBH9A@aAAHBH9A@aAAHBH9A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9yA@ a AA HB H9`A@ a HAA H9GA@aAA6H-HFHHfo 1HAoofofof`f`fhfhfffffofgA,HH9uHHIHIH9A!AHBH9A@aAAHBH9}A@aAAHBH9dA@aAAHBH9KA@aAAHBH92A@aAAHBH9A@aAAHBH9A@aAAHBH9A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9jA@ a HAA H9QA@aAA@1>1A$AHH9u1j1m@LHOL LZHLRH6I9BItIt=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo 1IfnT$f`fafpfDoftfHL9uHHHHH9L@82L@L99@8rL@AL9$@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@ AL9@8r L@ A L9|@8r L@ A L9g@8r L@ A L9R@8r L@ A L9=@8r A HH9(@8rAI2H9HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDoftfHL9uHHHHH9t@80LBL9a@8pLBAL9L@8pLBAL97@8pLBAL9"@8pLBAL9 @8pLBAL9@8pLBAL9@8pLBAL9@8pLB AL9@8p LB A L9@8p LB A L9@8p LB A L9z@8p LB A L9e@8p A HH9P@8pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo #1IDo2o0ftf1HL9uHHHHHH9DLFD8L9uDPLFD8RAL9[DPLFD8RAL9ADPLFD8RAL9'DPLFD8RAL9 DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9qDP LF D8R A L9WDP LF D8R A L9=DP D8R A HH9#@8BAB84BIL9uB84 B IL9uHHfD@80HH9uHH@@82HH9uHHwH=Ifo 1Io0o$2ftf1HI9uHHHHHH9DLFD8I95DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9eDP LF D8R A L9KDP LF D8R A L91DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io0o,2ftf1HI9uHHHHHH91D0D821HH9u11DLLJLRHGHOHH>It=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo 1IfnT$f`fafpfDoftfHL9uHHHHH9L@82L@L99@8rL@AL9$@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@AL9@8rL@ AL9@8r L@ A L9|@8r L@ A L9g@8r L@ A L9R@8r L@ A L9=@8r A HH9(@8rAI2H9HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDoftfHL9uHHHHH9t@80LBL9a@8pLBAL9L@8pLBAL97@8pLBAL9"@8pLBAL9 @8pLBAL9@8pLBAL9@8pLBAL9@8pLB AL9@8p LB A L9@8p LB A L9@8p LB A L9z@8p LB A L9e@8p A HH9P@8pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo 1IDo2o0ftf1HL9uHHHHHH9DLFD8L9uDPLFD8RAL9[DPLFD8RAL9ADPLFD8RAL9'DPLFD8RAL9 DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9qDP LF D8R A L9WDP LF D8R A L9=DP D8R A HH9#@8BAB84BIL9uB84 B IL9uHHfD@80HH9uHH@@82HH9uHHwH=Ifo 1Io0o$2ftf1HI9uHHHHHH9DLFD8I95DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9eDP LF D8R A L9KDP LF D8R A L91DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io0o,2ftf1HI9uHHHHHH91D0D821HH9u11DLLJLRHGHOHH>It=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo 1IfnT$f`fafpfDofdfHL9uHHHHH9L@:2L@L99@:rL@AL9$@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@ AL9@:r L@ A L9|@:r L@ A L9g@:r L@ A L9R@:r L@ A L9=@:r A HH9(@:rAI2H9 HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDofofdfHL9uHHHHH9p@:0LBL9]@:pLBAL9H@:pLBAL93@:pLBAL9@:pLBAL9 @:pLBAL9@:pLBAL9@:pLBAL9@:pLB AL9@:p LB A L9@:p LB A L9@:p LB A L9v@:p LB A L9a@:p A HH9L@:pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo 1IDo2o$0fdf1HL9uHHHHHH9DLFD8L9mDPLFD8RAL9SDPLFD8RAL99DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9iDP LF D8R A L9ODP LF D8R A L95DP D8R A HH9@8BAB:4BIL9uB:4 B IL9uHHfD@:0HH9uHH@@:2HH9uHHwH=Ifo 1Io2o,0fdf1HI9uHHHHHH9DLFD8I9-DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9wDPLF D8RAL9]DP LF D8R A L9CDP LF D8R A L9)DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io2o40fdf1HI9uHHHHHH91D0D821HH9u11ff.fLLJLRHGHOHH>It=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo 1IfnT$f`fafpfDofofdfHL9uHHHHH9H@:2L@L95@:rL@AL9 @:rL@AL9 @:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@ AL9@:r L@ A L9x@:r L@ A L9c@:r L@ A L9N@:r L@ A L99@:r A HH9$@:rAI2H9HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDofdfHL9uHHHHH9l@:0LBL9Y@:pLBAL9D@:pLBAL9/@:pLBAL9@:pLBAL9@:pLBAL9@:pLBAL9@:pLBAL9@:pLB AL9@:p LB A L9@:p LB A L9@:p LB A L9r@:p LB A L9]@:p A HH9H@:pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo 1IDo0o$2fdf1HL9uHHHHHH9DLFD8L9mDPLFD8RAL9SDPLFD8RAL99DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9iDP LF D8R A L9ODP LF D8R A L95DP D8R A HH9@8BAB:4BIL9uB:4 B IL9uHHfD@:0HH9uHH@@:2HH9uHHwH=Ifo 1Io0o,2fdf1HI9uHHHHHH9DLFD8I9-DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9wDPLF D8RAL9]DP LF D8R A L9CDP LF D8R A L9)DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io0o42fdf1HI9uHHHHHH91D0D821HH9u11ff.fLLJLRHGHOHH>It=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo 1IfnT$f`fafpfDofofdfHL9uHHHHH9H@:2L@L95@:rL@AL9 @:rL@AL9 @:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@ AL9@:r L@ A L9x@:r L@ A L9c@:r L@ A L9N@:r L@ A L99@:r A HH9$@:rAI2H9HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDofdfHL9uHHHHH9l@:0LBL9Y@:pLBAL9D@:pLBAL9/@:pLBAL9@:pLBAL9@:pLBAL9@:pLBAL9@:pLBAL9@:pLB AL9@:p LB A L9@:p LB A L9@:p LB A L9r@:p LB A L9]@:p A HH9H@:pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo 1IDo0o$2fdf1HL9uHHHHHH9DLFD8L9mDPLFD8RAL9SDPLFD8RAL99DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9iDP LF D8R A L9ODP LF D8R A L95DP D8R A HH9@8BAB:4BIL9uB:4 B IL9uHHfD@:0HH9uHH@@:2HH9uHHwH=Ifo v1Io0o,2fdf1HI9uHHHHHH9DLFD8I9-DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9wDPLF D8RAL9]DP LF D8R A L9CDP LF D8R A L9)DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io0o42fdf1HI9uHHHHHH91D0D821HH9u11ff.fLLJLRHGHOHH>It=Mu IH~%1DD8HLLLH9uIMuIu0H9H~HAH9HBAH9AHGHt$Ifo o1IfnT$f`fafpfDofdfHL9uHHHHH9L@:2L@L99@:rL@AL9$@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@AL9@:rL@ AL9@:r L@ A L9|@:r L@ A L9g@:r L@ A L9R@:r L@ A L9=@:r A HH9(@:rAI2H9 HHPH9HQAH9AHWHt$Ifo 1IfnT$f`fafpDofofdfHL9uHHHHH9p@:0LBL9]@:pLBAL9H@:pLBAL93@:pLBAL9@:pLBAL9 @:pLBAL9@:pLBAL9@:pLBAL9@:pLB AL9@:p LB A L9@:p LB A L9@:p LB A L9v@:p LB A L9a@:p A HH9L@:pAIH9H9RHHpLIH9AI9@A HrH9@I9AD AoHwHaIfo 1IDo2o$0fdf1HL9uHHHHHH9DLFD8L9mDPLFD8RAL9SDPLFD8RAL99DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLFD8RAL9DPLF D8RAL9DP LF D8R A L9DP LF D8R A L9iDP LF D8R A L9ODP LF D8R A L95DP D8R A HH9@8BAB:4BIL9uB:4 B IL9uHHfD@:0HH9uHH@@:2HH9uHHwH=Ifo V1Io2o,0fdf1HI9uHHHHHH9DLFD8I9-DPLFD8RAI9DPLFD8RAI9DPLFD8RAI9DRLFD8PAI9DRLFD8PAL9DPLFD8RAL9DPLFD8RAL9wDPLF D8RAL9]DP LF D8R A L9CDP LF D8R A L9)DP LF D8R A L9DP LF D8R A L9DP D8R A HH9z@8xAHHwHvdIfo 1Io2o40fdf1HI9uHHHHHH91D0D821HH9u11ff.fSLLZHZLGHWHLItLMu IM~,1fD9:@HLL!AIL9u[f.IMuHuI9M~΄I@H9HA@I9@3IAH%Lfo <fHD$1fnT$f`fafpfoftftffAHH9uLHHII9+9@!A0HpI9y@!ApHpI9y@!ApHpI9y@!ApHpI9y@!ApHpI9y@!ApHpI9y@!ApHpI9py@!ApHpI9Uy@!ApHp I9:y @!Ap Hp I9y @!Ap Hp I9y @!Ap Hp I9y @!Ap Hp I9y @H!Ap I9y!AP[HiL92MHBI9I@@H9@IAHLfo fHD$1fnT$f`fafpoftftffAHH9uLHHII9:@!A0HpI9z@!ApHpI9z@!ApHpI9z@!ApHpI9z@!ApHpI9fz@!ApHpI9Kz@!ApHpI90z@!ApHpI9z@!ApHp I9z @!Ap Hp I9z @!Ap Hp I9z @!Ap Hp I9z @!Ap Hp I9z @H!Ap I9sz!AH[H)I9SL9M?HAIxI9@H9 HBI9H9@ @IAHLfo 1fHDooftftftftffAHH9uLHHHII99@ƀ:@!A0HpI9{y@ƀz@!ApHpI9Xy@ƀz@!ApHpI95y@ƀz@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHp I9cy @ƀz @!Ap Hp I9@y @ƀz @!Ap Hp I9y @ƀz @!Ap Hp I9y @ƀz @!Ap Hp I9y @ƀz @H!Ap I9yz!A@[f.B<!CIM9uxB<!CIM9u\MSI:H!ȈBL9u[M%If9H!ЈAL9u[MIAHLfo 1fHooftftftftffAHH9uLHHHIL99@ƀ:@!A0HpL9iy@ƀz@!ApHpL9Fy@ƀz@!ApHpL9#y@ƀz@!ApHpL9z@ƀy@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHpI9y@ƀz@!ApHpI9ty@ƀz@!ApHp I9Qy @ƀz @!Ap Hp I9.y @ƀz @!Ap Hp I9 y @ƀz @!Ap Hp I9y @ƀz @!Ap Hp I9y @ƀz @H!Ap I9zy!A@[MIAHLfo 1fHooftftftftffAHH9uLHHHIL9|[1<@ƀ<@!A4HL9u[1P1[L LRLZHGHOHLIt=Mu I.M~$1:@ 8HLLLL9u@IMuIu0H9PM~HAH9HB@H9@I@Ht$L1ffo ɫHfnT$f`fafpfofftfHH9uLHHHI9G@ :HxI92@ zHxAI9@ zHxAI9@ zHxAI9@ zHxAI9@ zHxAI9@ zHxAI9@ zHxAI9@ zHx AI9z@ z Hx A I9c@ z Hx A I9L@ z Hx A I95@ z Hx A I9@ z A HI9@ rAI2H9<MHPH9HQ@H9@IPHt$L1ffo ЩHfnT$f`fafpfofftfHH9uLHHHI9G@ 8HzI92@ xHzAI9@ xHzAI9@ xHzAI9@ xHzAI9@ xHzAI9@ xHzAI9@ xHzAI9@ xHz AI9z@ x Hz A I9c@ x Hz A I9L@ x Hz A I95@ x Hz A I9@ x A HI9@ pAIH9~H9DMHpLIH9@I9@ HrH9@I9AD @jIpH\Lfo 1fHfo2o$0fftf1HH9uLHHHHI9?:@ 8H~I9)z@ xH~AI9z@ xH~AI9z@ xH~AI9z@ xH~AI9z@ xH~AI9z@ xH~AI9z@ xH~AI9zz@ xH~ AI9az @ x H~ A I9Hz @ x H~ A I9/z @ x H~ A I9z @ x H~ A I9z @ x A HI9R PADB B IM9uÉB BIM9uMIf HL9uMI HL9uMaIpH=Lfo }1fHo0o,2fftf1HH9uLHHHHL98@ :H~L9x@ zH~AL9z@ xH~AL9z@ xH~AL9x@ zH~AL9x@ zH~AI9oz@ xH~AI9Vz@ xH~AI9=z@ xH~ AI9$z @ x H~ A I9 z @ x H~ A I9z @ x H~ A I9z @ x H~ A I9z @ x A HI9@ BAMIpHvkLfo 1fHo0o42fftf1HH9uLHHHHL91<2@ <01HL9u11 @SLLGHOH>HLZLRH~*1A9A8@HIM1LH9u[ÐLLJLHWH6IH1fDAHMLH9uHHB H9HFHHoo1Hf.zo,U8D`hu}}9DH H9uHHI HH9t!LHHBH9rwfDIL9&H~HB I9IB H9HFHHooˢ1HDzo$]8D`hu}}9DH H9uHHI HH9=L@HHBH9w1A  HH9u1A  HH9u@LLJLHWH6IH 1ff.AWHM*^,LH9uHIB I9HFHH(1oo%ɡHDzo<E8l} }9}#}9} }#}9}#^~}9}#^Am^u8}9^}E8}+}9^^u8}9^^M8u+g }9LH H9HHI HH9t. LWHH*^,BH9rwfII93H~IB H9HB I9HFHH(ß1oٟo%Hff.fzo<E8l} }9}#}9} }9}#}#^}9}#^E8}9^^E8}+}9^^u8}9^^M8u+g }9LH H9HHI HH9L Lff.WHH*^,BH9w  ȗ1ff.A W*^, HH9u 1A W*^, HH9ufLLJLHGH6IH1fDA HMˆLH9uH~{IR I9:HVH,H1Hzom8D}9DH H9uHHI HH9tLfD HHHH9rwfIEI9cH~IR H9HP I9txHVHvnH1Hff.fzo u8D}9DH H9uHHI HH9hLf HHHH9wK1fDA  HH9u1A  HH9uf.LLJLHWH6IH1fDAHM؈LH9uHIB I9VHFHHH1Hzoe8D}9DH H9uHHI HH9tLfHHوJH9rwI5I9UH~IB H9HB I9HFHv|H1HDzom8D}9DH H9uHHI HH9fLff.HHوJH9w;1@A و HH9u1A و HH9ufDH LBLHGH6HH1fDA9HILH9uHHP H9vHVHhHo *1Hzo$]8Dt}9DH H9uHHI HH9t$Lff.:HHH9rwfI%L9DH~HP I9IQ H9HVHHo c1Hfzoe8Dt}9DH H9uHHI HH9PLf.:HHH9w+1fDA<HH9u1A<HH9uLLJLHWH6IH1fDAHMЈLH9uHHB H9VHFHHH1vHzoe8D}9DH H9uHHI HH9tLfHHшJH9rwI5L9UH~HB I9IB H9HFHv|H1vHDzom8D}9DH H9uHHI HH9fLff.HHшJH9w;1@A ш HH9u1A ш HH9ufDLHOL LZHLRH6I9UHHItItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %]Io$]8Dt}9DH L9uIIJLL9t%Hff.@@82HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o L\Io e8D t}9DH I9uIIJ LL9AHff.@81HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [[1IDo,1o42U8D1M8T2t0}9D0H L9uHHH9KD2D810HH9(B84BIL9u:B84 BIL9u#HHff.@82HH9uHH@81HH9uHHwHQIo MZ1Io<2E8D2o<1E8T1t0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo Y1Io,2o41U8D2M8T1t0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHHLLJLRHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %XIo$]8Dt}9DH L9uIIJLL9t%Hff.@@82HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o LWIo e8D t}9DH I9uIIJ LL9AHff.@81HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [V1IDo,1o42U8D1M8T2t0}9D0H L9uHHH9KD2D810HH9(B84BIL9u:B84 BIL9u#HHff.@82HH9uHH@81HH9uHHwHQIo MU1Io<2E8D2o<1E8T1t0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo T1Io,2o41U8D2M8T1t0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHHLLJLRHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %SIo$]8Dd}9DH L9uIIJLL9t%Hff.@@:2HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o LRIo e8D d}9DH I9uIIJ LL9AHff.@:1HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [Q1IDo,1o42U8D1M8T2d0}9D0H L9uHHH9KD2D810HH9(B:4BIL9u:B:4 BIL9u#HHff.@:2HH9uHH@:1HH9uHHwHQIo MP1Io<2E8T2o<1E8D1d0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo O1Io,2o41U8T2M8D1d0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHHLLJLRHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %NIo$]8Dd}9DH L9uIIJLL9t%Hff.@@:2HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o LMIo e8D d}9DH I9uIIJ LL9AHff.@:1HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [L1IDo,1o42U8T1M8D2d0}9D0H L9uHHH9KD2D810HH9(B:4BIL9u:B:4 BIL9u#HHff.@:2HH9uHH@:1HH9uHHwHQIo MK1Io<2E8D2o<1E8T1d0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo J1Io,2o41U8D2M8T1d0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHHLLJLRHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %IIo$]8Dd}9DH L9uIIJLL9t%Hff.@@:2HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o LHIo e8D d}9DH I9uIIJ LL9AHff.@:1HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [G1IDo,1o42U8T1M8D2d0}9D0H L9uHHH9KD2D810HH9(B:4BIL9u:B:4 BIL9u#HHff.@:2HH9uHH@:1HH9uHHwHQIo MF1Io<2E8D2o<1E8T1d0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo E1Io,2o41U8D2M8T1d0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHHLLJLRHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIu2H9H~HP H9HQ AH9A~HWHp@t$I}xT$1o %DIo$]8Dd}9DH L9uIIJLL9t%Hff.@@:2HHH9wwI1H9HHJ H9HH AH9AHOH@t$I}xT$1o LCIo e8D d}9DH I9uIIJ LL9AHff.@:1HHH9wIH9NH9HHr LH H9AI9@A Hq H9@I9AD AOHwHAIo [B1IDo,1o42U8D1M8T2d0}9D0H L9uHHH9KD2D810HH9(B:4BIL9u:B:4 BIL9u#HHff.@:2HH9uHH@:1HH9uHHwHQIo MA1Io<2E8T2o<1E8D1d0}9D0H L9uHHHHHH99wIILLL@D1D820HH9|H+HwHIo @1Io,2o41U8T2M8D1d0}9D0H L9uHHHHHH9wIILLLD2D810HH9|1D2D810HH9u11 UHSHLLZHZLGHWHLItTMu IEM~41ff.9A8@HLM!HL9uH]fDIMuHuAH99M~̈́HB @H9HA @H9@IAHLo ?HD$}x\$1o,U8Dtt}9DH H9uLHH1HI9t$L8@HH!@rH9wwff.HI9MI@ @H9HB I9IAHLo $>HD$}x\$1ff.fzo$]8Dtt}9DH H9uLHIHI9Mf8HH!JI9wHH9I9GMHA Hz H9@H9 I@ H9L9@ @IAHLo =1HDo4zo<M8DE8Ttttt}9DH H9uLHI9!<@A<@!@4HI9C<!BIM9uB<!BIM9uMMfA8I!A@M9uMI@9H!ЈAL9ukMbIAHLo ;1Hzo4o<M8DE8Ttttt}9DH H9uLHHIHL9wHHHIHA<<@! HL9|MIAHLo ;1Hzo4o<M8DE8Ttttt}9DH H9uLHHIHL9 wHHHHI<@A<@!@4HL9|1<@A<@!@4HL9u11fDUHHL LRLZHGHWHLItEMu I&M~,1ff.@9@ :HLLLL9uIMuIu2H9M~HP H9HQ @H9@IPH@t$L1}x\$o Q9Hff.fo,U8Dt}9DH H9uLHH9HI9t#Lff.@ :HHH9wwfDI1H9MHJ H9HH @H9@IHH@t$L1}x\$o h8H@o$ ]8D t}9DH H9uLHH :HI9?L@ 9HHH9wfDIH9OH9MHr LH H9@I9@ Hq H9@I9AD @dIpHVLo |71Hfo41o<2M8D1E8T2t0}9D0H H9uLHI9I@<1@ <20HI9+B BIM9u(B BIM9uMI HI9uMIf HI9uMIpHcLo l61Ho42o<1M8D2E8T1t0}9D0H H9uLHHHHL92wHHHHHff. 2 70HL9|M IpHLo 51Ho42o<1M8D2E8T1t0}9D0H H9uLHHHHL9~wHHHHH1 70HL9|1<1@ <20HL9u11ff.fSLLGHOH>HLZLRH~21ff.A9A8@HIM1LH9u[fSHLGLHZHOLZLL9t51M~'fD9@8LHLLAIL9u[DMuI9uM~1@9@8LHLL9u[SHLGLHZHOLZLL9t51M~'fD9@8OHLLAIL9u[DMuI9uM~1@9@8OHLL9u[AUATUSHLLLGHHHjLbMAA E1AxWt{DEfttu@7IIILM9tHAA yoH50/H?2H8H[]A\A]fDH[]A\A]ff.fAWAVAUATUSHL6L/HoLgLHzLzM~P1"@AEA$HMHMI9t*MuH|$L$A$L$H|$@H[]A\A]A^A_Ð'LLJHHWH>It%H~1fD0HL@2LH9ufIuH9tH~1fD4@4 HH9u1H~4@4 HH9ufDAWAVAUATUSHPLLJHL_LIMIzL1LHHHHMHILMHHHH9@MHHHMHILH9@OHELO4@O$LHHO,ILHD$K6HLHD$Jfo.HN<HK$H|$L|$N<L)L)HD$JL|$N<L|$L|-HD$JL|$OItEH~8 `!1fDff(HL*^,ňLH9uIuH9H~HBH9HA@H9@HGHHff1f(%fo-%HofD(fD(fD(fD(fD(fD(fofhfD(f`fofifDofifafDaAfD^fEpEfE^fAfEfAlDfpfE^fD^fAfEfAlfDofafDifofAafAifD(fafpfD^ffD^fAfAflfpfD^fD^fAfAflfofafifofafifaffgHH9HHHHH942f U*f(^,@1HpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9arff(*^,@qHpH98rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHp H9r ff(*^,@q Hp H9r ff(*^,@q Hp H9kr ff(*^,@q Hp H9Br ff(*^,@q Hp H9r ff(*^f(,H@q H9Bf*^,AHHBH9HGHHff1f(!fo-!HofD(fD(fD(fD(fD(fD(fofhfD(f`fofifDofifafDaAfD^fEpEfE^fAfEfAlDfpfE^fD^fAfEfAlfDofafDifofAafAifD(fafpfD^ffD^fAfAflfpfD^fD^fAfAflfofafifofafifaffgHH9HHHHH9,2f M*f(^,@1HpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHpH9Yrff(*^,@qHpH90rff(*^,@qHpH9rff(*^,@qHpH9rff(*^,@qHp H9r ff(*^,@q Hp H9r ff(*^,@q Hp H9cr ff(*^,@q Hp H9:r ff(*^,@q Hp H9r ff(*^f( 1f4ff(*^,@4HH9u 14ff(*^,@4HH9uf.LHLJHH6It%H~1fDHLLH9uIuH9H~HPH9HWH9HVHH1HfoHH9uHHHH H9t8@9HzH9tx@yHzH9_x@yHzH9Jx@yHzH95x@yHzH9 x@yHzH9 x@yHzH9x@yHzH9x@yHz H9x @y Hz H9x @y Hz H9x @y Hz H9x @y Hz H9xx H@y H9c@AHRHPH9rNHVHvDH1Hf.o  HH9u{1  HH9u1  HH9uff.LLJHHWH>It%H~1fDHL؈LH9uÐIuH9H~HBH9HA@H9@+HGHH1fHofofHH9uHHHHH9t1@2HpH9mq@rHpH9Vq@rHpH9?q@rHpH9(q@rHpH9q@rHpH9q@rHpH9q@rHpH9q@rHp H9q @r Hp H9q @r Hp H9q @r Hp H9pq @r Hp H9Yq H@r H9BA؈BH/HBH9HGHH1fHfofofHH9uHHHHH91@2HpH9q@rHpH9L14@4HH9u14@4HH9ufDLLJHGHH6It%H~1fD:HLLH9ufIuH9H~HHH9HJ@H9@HNH Hfo 1fHo ftfHH9uHHHHH9u:HyH9bzHy@H9MzHy@H98zHy@H9#zHy@H9zHy@H9zHy@H9zHy@H9zHy @H9z Hy @ H9z Hy @ H9z Hy @ H9{z Hy @ H9fz @ HH9Qz@H?HHH9HNHHfo \1fHfo ftfHH9uHHHHH9:HyH9zHy@H9h1D< HH9u1ɀ< HH9uf.LLJHHWH>It%H~1fDHLЈLH9uÐIuH9H~HBH9HA@H9@HGHH1fvHofHH9uHHHHH9t1@2HpH9qq@rHpH9Zq@rHpH9Cq@rHpH9,q@rHpH9q@rHpH9q@rHpH9q@rHpH9q@rHp H9q @r Hp H9q @r Hp H9q @r Hp H9tq @r Hp H9]q H@r H9FAЈBH3HBH9HGHH1fvHDofHH9uHHHHH91@2HpH9q@rHpH9T1D4@4HH9u14@4HH9uff.LHOL LZHLRH6I9BIt L$Hfo1HfnT$f`fafpfof`fhf.Aofof`fhfffffofgA4HH9uHHIIH9 AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9A@AAHBH9yA@AAHBH9`A@AAHBH9GA@AAHB H9.A@ AA HB H9A@ AA HB H9A@ AA HB H9A@ AA HB H9A@ HAA H9A@AADMWM9NAHH~H[.H<II1Ht$IIIHL$L9H,RH)ID$L,Ld-fofoLLDE3fofoHC4;C #f`fhG "HH C +HH A HH A +HH A SHH A IHH C :HHL L G *Ht$HL E HL E *HL E RHL E HL E IHL HL$foD$foT$f`fhfffffgH9fofoHt$D$fsf`fhHL$fof`fhfffffgfofofsf`fhfof`fhfffffgfofofsf`fhfof`fhfffffofgfofofofsf`fhfof`fhfffffofg)|$|$HHILLH9DH!HH9AfIAI9HIAH9HA@I9@\HFHNT$Hfo1HfnT$f`fafpfof`fhofof`fhfffffofgA,HH9uHHHIH9AHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9AAAHGH9hAAAHGH9PAAAHG H98A AA HG H9 A AA HG H9A AA HG H9A AA HG H9A HAA H9AAADI{M9lI9YHI@IyI9I9 HAI9H9@  HFH Hfo1HAoofofof`f`fhfhfffffofgA4HH9uHHIHIH9A!AHBH9A@aAAHBH9A@aAAHBH9A@aAAHBH9pA@aAAHBH9WA@aAAHBH9>A@aAAHBH9%A@aAAHBH9 A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HBH9vA@aAAef.AAHH9uABCIL9u'HHFHT$HfoHHHfnD$f`fofafpfof`fhfoHfof`fhfffffofghH9uIILL9ˆIBH9nAˆAIBH9WAˆAIBH9@AˆAIBH9)AˆAIBH9AˆAIBH9AˆAIBH9AˆAIBH9AˆAIB H9A ˆA IB H9A ˆA IB H9A ˆA IB H9qA ˆA IB H9ZA IˆA L9CAˆA4H+HFHL$HfoLHLfnD$f`fofafpfof`fhoHfof`fhfffffofgxH9uHHIH9AAHBH9A@A@HBH9iA@A@HBH9PA@A@HBH97A@A@HBH9A@A@HBH9A@A@HBH9A@A@HBH9A@A@HB H9A@ A@ HB H9A@ A@ HB H9A@ A@ HB H9oA@ A@ HB H9VA@ HA@ H9=A@A@,H#HFHHfo1HAoofofof`f`fhfhfffffofgA4HH9uHHIHIH9A AHBH9A@aAAHBH9sAA`AAHBH9ZA@aAAHBH9AA@aAAHBH9(A@aAAHBH9A@aAAHBH9A@aAAHBH9A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9yA@ a AA HB H9`A@ a HAA H9GA@aAA6H-HFHHfo1HAoofofof`f`fhfhfffffofgA,HH9uHHIHIH9A!AHBH9A@aAAHBH9}A@aAAHBH9dA@aAAHBH9KA@aAAHBH92A@aAAHBH9A@aAAHBH9A@aAAHBH9A@aAAHB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9A@ a AA HB H9jA@ a HAA H9QA@aAA@1F1A$AHH9u1j1m@LHOL LZHLRH6I9BItA@ IA@ L9&A@A@[1HA AHH9u[H1A AHH9u[ÐSLLOLHZHLZH6M9ItCMu IH~%1DAHMLAIH9u[IMuHuM9|H~I@I9IAI9HFHHcHfo-1H\$Hff~\$fDAofofhf`fofifafffofafifofifafafofifaffffofafifofifafaffgAHH9pHHIIH9AAHPH9APAQHPH9APAQHPH9APAQHPH9rAPAQHPH9ZAPAQHPH9BAPAQHPH9*APAQHPH9APAQHP H9AP AQ HP H9AP AQ HP H9AP AQ HP H9AP AQ HP H9AP HAQ H9A@AA[M&L9AH~1HLH9uA[HAI9HDB CII9u[HM9I9H1fA AHH9u[CCII9uHxHHWH9u[HPHFHHHcfLHH\$fo- f~\$LoHfofhf`fofifafffofafifofifafafofifaffffofafifofifafaffg@H9sIIMI9tAAICH9^A@A@ICH9FA@A@ICH9.A@A@ICH9A@A@ICH9A@A@ICH9A@A@ICH9A@A@ICH9A@A@IC H9A@ A@ IC H9A@ A@ IC H9nA@ A@ IC H9VA@ A@ IC H9>A@ IA@ L9&A@A@[1HA AHH9u[H1A AHH9u[ÐLLJLRHGHWHH>It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$Ifo ߹1IfnT$f`fafpfDoftfHL9uHHHHH9L@81LBL99@8qLB@L9$@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB @L9@8q LB @ L9|@8q LB @ L9g@8q LB @ L9R@8q LB @ L9=@8q @ HH9(@8q@I1H9 HHJH9HHAH9AHOHt$Ifo 1IfnT$f`fafpDo ftfHL9uHHHHH9t@82LAL9a@8rLA@L9L@8rLA@L97@8rLA@L9"@8rLA@L9 @8rLA@L9@8rLA@L9@8rLA@L9@8rLA @L9@8r LA @ L9@8r LA @ L9@8r LA @ L9z@8r LA @ L9e@8r @ HH9P@8r@IH9~H9KHHrLHH9AI9@A HqH9@I9AD AhHwHZIfo 1IDo1o2ftf0HI9uHHHHHH9DLFD8L9uDRLFD8Q@L9[DRLFD8Q@L9ADRLFD8Q@L9'DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9DR LF D8Q @ L9qDR LF D8Q @ L9WDR LF D8Q @ L9=DR D8Q @ HH9#z@8y@f.B84BIL9uB84 BIL9uHHGHv[t$Hfo HHHfnD$f`fafpoHftf@H9uIILL9x@82I@H9e@8rI@BH9P@8rI@BH9;@8rI@BH9&@8rI@BH9@8rI@BH9@8rI@BH9@8rI@BH9@8rI@ BH9@8r I@ B H9@8r I@ B H9@8r I@ B H9~@8r I@ B H9i@8r B IL9T@8rBHBHGHvXt$Hfo mHHHfnD$f`fafpoHftf@H9uIILL9@81IAH9@8qIAAH9@8qIAAH9@8qIAAH9@8qIAAH9y@8qIAAH9d@8qIAAH9O@8qIAAH9:@8qIA AH9%@8q IA A H9@8q IA A H9@8q IA A H9@8q IA A H9@8q A IL9@8qAHHwH=Ifo հ1Io2o$1ftf0HI9uHHHHHH9DLFD8I9It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$Ifo ϭ1IfnT$f`fafpfDoftfHL9uHHHHH9L@81LBL99@8qLB@L9$@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB@L9@8qLB @L9@8q LB @ L9|@8q LB @ L9g@8q LB @ L9R@8q LB @ L9=@8q @ HH9(@8q@I1H9 HHJH9HHAH9AHOHt$Ifo 1IfnT$f`fafpDo ftfHL9uHHHHH9t@82LAL9a@8rLA@L9L@8rLA@L97@8rLA@L9"@8rLA@L9 @8rLA@L9@8rLA@L9@8rLA@L9@8rLA @L9@8r LA @ L9@8r LA @ L9@8r LA @ L9z@8r LA @ L9e@8r @ HH9P@8r@IH9~H9KHHrLHH9AI9@A HqH9@I9AD AhHwHZIfo 1IDo1o2ftf0HI9uHHHHHH9DLFD8L9uDRLFD8Q@L9[DRLFD8Q@L9ADRLFD8Q@L9'DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9DR LF D8Q @ L9qDR LF D8Q @ L9WDR LF D8Q @ L9=DR D8Q @ HH9#z@8y@f.B84BIL9uB84 BIL9uHHGHv[t$Hfo HHHfnD$f`fafpoHftf@H9uIILL9x@82I@H9e@8rI@BH9P@8rI@BH9;@8rI@BH9&@8rI@BH9@8rI@BH9@8rI@BH9@8rI@BH9@8rI@ BH9@8r I@ B H9@8r I@ B H9@8r I@ B H9~@8r I@ B H9i@8r B IL9T@8rBHBHGHvXt$Hfo ]HHHfnD$f`fafpoHftf@H9uIILL9@81IAH9@8qIAAH9@8qIAAH9@8qIAAH9@8qIAAH9y@8qIAAH9d@8qIAAH9O@8qIAAH9:@8qIA AH9%@8q IA A H9@8q IA A H9@8q IA A H9@8q IA A H9@8q A IL9@8qAHHwH=Ifo Ť1Io2o$1ftf0HI9uHHHHHH9DLFD8I9It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$I1ffo IfnT$f`fafpfofftfHL9uHHHHH9H@:1LBL95@:qLB@L9 @:qLB@L9 @:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB @L9@:q LB @ L9x@:q LB @ L9c@:q LB @ L9N@:q LB @ L99@:q @ HH9$@:q@I1H90HHJH9HHAH9AHOHt$I1ffo ؟IfnT$f`fafpo$ fofftfHL9uHHHHH9d@:2LAL9Q@:rLA@L9<@:rLA@L9'@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA @L9@:r LA @ L9@:r LA @ L9@:r LA @ L9j@:r LA @ L9U@:r @ HH9@@:r@IH9H9sHHrLHH9AI9@A HqH9@I9AD AHwHIfo 1fIfo1o,2fftf0HI9uHHHHHH9pDLFD8L9YDRLFD8Q@L9?DRLFD8Q@L9%DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9oDR LF D8Q @ L9UDR LF D8Q @ L9;DR LF D8Q @ L9!DR D8Q @ HH9z@8y@fDB:4BIL9uB:4 BIL9uHHGHvkt$HHfHfo śHfnD$f`fafpo0foHfftf@H9uIILL9P@:2I@H9=@:rI@BH9(@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@ BH9@:r I@ B H9@:r I@ B H9k@:r I@ B H9V@:r I@ B H9A@:r B IL9,@:rBHHGHv`t$HHfHfo HfnD$f`fafpoHfftf@H9uIILL9@:1IAH9@:qIAAH9@:qIAAH9s@:qIAAH9^@:qIAAH9I@:qIAAH94@:qIAAH9@:qIAAH9 @:qIA AH9@:q IA A H9@:q IA A H9@:q IA A H9@:q IA A H9@:q A IL9@:qAHzHwHMIfo 1fIo1o<2fftf0HI9uHHHHHH9DLFD8I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DQLFD8R@I9DQLFD8R@I9hDRLFD8Q@L9NDRLF D8Q@L94DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR D8Q @ HH9y@8z@HHwHvlIfo 1fIo1o<2fftf0HI9uHHHHHH91D2D810HH9u11ff.LLJLRHGHWHH>It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$I1ffo iIfnT$f`fafpfo$fofftfHL9uHHHHH9D@:1LBL91@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB @L9@:q LB @ L9t@:q LB @ L9_@:q LB @ L9J@:q LB @ L95@:q @ HH9 @:q@I1H90HHJH9HHAH9AHOHt$I1ffo IfnT$f`fafpo fftfHL9uHHHHH9h@:2LAL9U@:rLA@L9@@:rLA@L9+@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA @L9@:r LA @ L9@:r LA @ L9@:r LA @ L9n@:r LA @ L9Y@:r @ HH9D@:r@IH9H9sHHrLHH9AI9@A HqH9@I9AD AHwHIfo 1fIfo2o,1fftf0HI9uHHHHHH9pDLFD8L9YDRLFD8Q@L9?DRLFD8Q@L9%DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9oDR LF D8Q @ L9UDR LF D8Q @ L9;DR LF D8Q @ L9!DR D8Q @ HH9z@8y@fDB:4BIL9uB:4 BIL9uHHGHvgt$HHfHfo uHfnD$f`fafpoHfftf@H9uIILL9T@:2I@H9A@:rI@BH9,@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@ BH9@:r I@ B H9@:r I@ B H9o@:r I@ B H9Z@:r I@ B H9E@:r B IL90@:rBHHGHvdt$HHfHfo ΍HfnD$f`fafpo0foHfftf@H9uIILL9@:1IAH9@:qIAAH9@:qIAAH9s@:qIAAH9^@:qIAAH9I@:qIAAH94@:qIAAH9@:qIAAH9 @:qIA AH9@:q IA A H9@:q IA A H9@:q IA A H9@:q IA A H9@:q A IL9@:qAHzHwHMIfo 51fIo2o<1fftf0HI9uHHHHHH9DLFD8I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DQLFD8R@I9DQLFD8R@I9hDRLFD8Q@L9NDRLF D8Q@L94DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR D8Q @ HH9y@8z@HHwHvlIfo [1fIo2o<1fftf0HI9uHHHHHH91D2D810HH9u11ff.LLJLRHGHWHH>It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$I1ffo IfnT$f`fafpfo$fofftfHL9uHHHHH9D@:1LBL91@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB @L9@:q LB @ L9t@:q LB @ L9_@:q LB @ L9J@:q LB @ L95@:q @ HH9 @:q@I1H90HHJH9HHAH9AHOHt$I1ffo 8IfnT$f`fafpo fftfHL9uHHHHH9h@:2LAL9U@:rLA@L9@@:rLA@L9+@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA @L9@:r LA @ L9@:r LA @ L9@:r LA @ L9n@:r LA @ L9Y@:r @ HH9D@:r@IH9H9sHHrLHH9AI9@A HqH9@I9AD AHwHIfo C1fIfo2o,1fftf0HI9uHHHHHH9pDLFD8L9YDRLFD8Q@L9?DRLFD8Q@L9%DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9oDR LF D8Q @ L9UDR LF D8Q @ L9;DR LF D8Q @ L9!DR D8Q @ HH9z@8y@fDB:4BIL9uB:4 BIL9uHHGHvgt$HHfHfo %HfnD$f`fafpoHfftf@H9uIILL9T@:2I@H9A@:rI@BH9,@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@ BH9@:r I@ B H9@:r I@ B H9o@:r I@ B H9Z@:r I@ B H9E@:r B IL90@:rBHHGHvdt$HHfHfo ~HfnD$f`fafpo0foHfftf@H9uIILL9@:1IAH9@:qIAAH9@:qIAAH9s@:qIAAH9^@:qIAAH9I@:qIAAH94@:qIAAH9@:qIAAH9 @:qIA AH9@:q IA A H9@:q IA A H9@:q IA A H9@:q IA A H9@:q A IL9@:qAHzHwHMIfo 1fIo2o<1fftf0HI9uHHHHHH9DLFD8I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DQLFD8R@I9DQLFD8R@I9hDRLFD8Q@L9NDRLF D8Q@L94DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR D8Q @ HH9y@8z@HHwHvlIfo ~1fIo2o<1fftf0HI9uHHHHHH91D2D810HH9u11ff.LLJLRHGHWHH>It=Mu IH~%1DD8HLLLH9uIMuIu2H9H~HPH9HQAH9AHWHt$I1ffo |IfnT$f`fafpfofftfHL9uHHHHH9H@:1LBL95@:qLB@L9 @:qLB@L9 @:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB@L9@:qLB @L9@:q LB @ L9x@:q LB @ L9c@:q LB @ L9N@:q LB @ L99@:q @ HH9$@:q@I1H90HHJH9HHAH9AHOHt$I1ffo zIfnT$f`fafpo$ fofftfHL9uHHHHH9d@:2LAL9Q@:rLA@L9<@:rLA@L9'@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA@L9@:rLA @L9@:r LA @ L9@:r LA @ L9@:r LA @ L9j@:r LA @ L9U@:r @ HH9@@:r@IH9H9sHHrLHH9AI9@A HqH9@I9AD AHwHIfo x1fIfo1o,2fftf0HI9uHHHHHH9pDLFD8L9YDRLFD8Q@L9?DRLFD8Q@L9%DRLFD8Q@L9 DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLFD8Q@L9DRLF D8Q@L9DR LF D8Q @ L9oDR LF D8Q @ L9UDR LF D8Q @ L9;DR LF D8Q @ L9!DR D8Q @ HH9z@8y@fDB:4BIL9uB:4 BIL9uHHGHvkt$HHfHfo vHfnD$f`fafpo0foHfftf@H9uIILL9P@:2I@H9=@:rI@BH9(@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@BH9@:rI@ BH9@:r I@ B H9@:r I@ B H9k@:r I@ B H9V@:r I@ B H9A@:r B IL9,@:rBHHGHv`t$HHfHfo *uHfnD$f`fafpoHfftf@H9uIILL9@:1IAH9@:qIAAH9@:qIAAH9s@:qIAAH9^@:qIAAH9I@:qIAAH94@:qIAAH9@:qIAAH9 @:qIA AH9@:q IA A H9@:q IA A H9@:q IA A H9@:q IA A H9@:q A IL9@:qAHzHwHMIfo s1fIo1o<2fftf0HI9uHHHHHH9DLFD8I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DRLFD8Q@I9DQLFD8R@I9DQLFD8R@I9hDRLFD8Q@L9NDRLF D8Q@L94DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR LF D8Q @ L9DR D8Q @ HH9y@8z@HHwHvlIfo q1fIo1o<2fftf0HI9uHHHHHH91D2D810HH9u11ff.SLLZHZHOHWLH?ItLMu IM~,1fD?9AHLLD!HL9u[f.IMuHuH9~ M~΄HBH9HG@H9@KIAH=Lfo lpfHD$1fnT$f`fafpfoftftffHH9uLHHHI9,?@!@2HpI9@!@rHpI9@!@rHpI9@!@rHpI9@!@rHpI9@!@rHpI9@!@rHpI9q@!@rHpI9V@!@rHp I9; @!@r Hp I9  @!@r Hp I9 @!@r Hp I9 @!@r Hp I9 @H!@r I9!J[fHiH9JMHA@H9HB@H9@IAHLfo "nfHD$1fnT$f`fafpoftftffHH9uLHHHI99@!@:HxI9y@!@zHxI9y@!@zHxI9y@!@zHxI9zy@!@zHxI9_y@!@zHxI9Dy@!@zHxI9)y@!@zHxI9y@!@zHx I9y @!@z Hx I9y @!@z Hx I9y @!@z Hx I9y @!@z Hx I9y @H!@z I9ly!@r[fHH9H9K M/HGLBH9@I9 HAH9I9AD @ IAH~ Lfo k1fH@ooftftftftffHH9uLHHHHI9?@ƀ9AD!@2HpI9k@ƀyAD!@rHpI9G@ƀyAD!@rHpI9#@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9o@ƀyAD!@rHp I9K @ƀy AD!@r Hp I9' @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9 @ƀy AHD!@r I9y!ȈB[fDB<!BIM9u`B<!BIM9uDM;IA@HvkLfo hfHD$HHfnD$f`fafpoHftftff@H9uMILM99!IBI9y!AIBI9y!AIBI9wy!AIBI9^y!AIBI9Ey!AIBI9,y!AIBI9y!AIBI9y!AIB I9y !A IB I9y !A IB I9y !A IB I9y !A IB I9}y I!A M9dy!@q[MLIAHvhLfo gfHD$HHfnD$f`fafpoHftftff@H9uMILM9?!ȈICI9!ȈGICI9!ȈGICI9!ȈGICI9s!ȈGICI9Z!ȈGICI9A!ȈGICI9(!ȈGICI9!ȈGIC I9 !ȈG IC I9 !ȈG IC I9 !ȈG IC I9 !ȈG IC I9 I!ȈG M9y!O[MbIAHLfo %e1fHooftftftftffHH9uLHHHHL99@ƀ?AD!@2HpL9y@ƀAD!@rHpL9y@ƀAD!@rHpL9@ƀyAD!@rHpL9j@ƀyAD!@rHpL9Fy@ƀAD!@rHpL9"y@ƀAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHp I9 @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9n @ƀy AD!@r Hp I9J @ƀy AD!@r Hp I9& @ƀy AHD!@r I9y!ȈB[MIAHLfo b1fHooftftftftffHH9uLHHHHL9y?@ƀ9AD!@2HpI9X@ƀyAD!@rHpI94@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9@ƀyAD!@rHpI9\@ƀyAD!@rHp I98 @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9 @ƀy AD!@r Hp I9 @ƀy AHD!@r I9y!ȈB[1<@ƀ<AD!@4HL9u[11FfL LRLZHGHWHLIt=Mu I.M~$19@ :HLLLL9u@IMuIu2H9M~HPH9HQ@H9@IPHt$L1ffo I_HfnT$f`fafpfofftfHH9uLHHHI9G@ 9HzI92@ yHz@I9@ yHz@I9@ yHz@I9@ yHz@I9@ yHz@I9@ yHz@I9@ yHz@I9@ yHz @I9z@ y Hz @ I9c@ y Hz @ I9L@ y Hz @ I95@ y Hz @ I9@ y @ HI9@ q@I1H9<MHJH9HH@H9@IHHt$L1ffo P]HfnT$f`fafpfo fftfHH9uLHHHI9G@ :HyI92@ zHy@I9@ zHy@I9@ zHy@I9@ zHy@I9@ zHy@I9@ zHy@I9@ zHy@I9@ zHy @I9z@ z Hy @ I9c@ z Hy @ I9L@ z Hy @ I95@ z Hy @ I9@ z @ HI9@ r@IH9H9dMHrLHH9@I9@ HqH9@I9AD @IpH|Lfo <[1fHfo1o$2fftf0HH9uLHHHHI9?9@ :H~I9)y@ zH~@I9y@ zH~@I9y@ zH~@I9y@ zH~@I9y@ zH~@I9y@ zH~@I9y@ zH~@I9zy@ zH~ @I9ay @ z H~ @ I9Hy @ z H~ @ I9/y @ z H~ @ I9y @ z H~ @ I9y @ z @ HI9I J@DB BIM9uÉB BIM9uMI@Hvct$LHfHfo 1YHfnD$f`fafpoHfftf@H9uMILM93 IAI9 BIABI9 BIABI9 BIABI9 BIABI9 BIABI9 BIABI9 BIABI9 BIA BI9o B IA B I9Y B IA B I9C B IA B I9- B IA B I9 B B IM9@ rBMI@Hv`t$LHfHfo WHfnD$f`fafpoHfftf@H9uMILM9 IBI9q AIBAI9[ AIBAI9E AIBAI9/ AIBAI9 AIBAI9 AIBAI9 AIBAI9 AIB AI9 A IB A I9 A IB A I9 A IB A I9 A IB A I9i A A IM9S@ qAMAIpH=Lfo U1fHo2o,1fftf0HH9uLHHHHL99@ :H~I9y@ zH~@L9y@ zH~@L9y@ zH~@L9z@ yH~@L9hy@ zH~@L9Oz@ yH~@L96y@ zH~@I9y@ zH~ @I9y @ z H~ @ I9y @ z H~ @ I9y @ z H~ @ I9y @ z H~ @ I9y @ z @ HI9R Q@MrIpHvkLfo T1fHo2o41fftf0HH9uLHHHHL91<1@ <20HL9u11 @SLLGHOH>HLZLRH~*1A9A8@HIM1LH9u[ÐLLJLHWH6IH1fDAHMLH9uHHB H9HFHHoSoT1Hf.zo,U8D`hu}}9DH H9uHHI HH9t!LHHBH9rwfDIL9&H~HB I9IB H9HFHHoSo+S1HDzo$]8D`hu}}9DH H9uHHI HH9=L@HHBH9w1A  HH9u1A  HH9u@LLJLHWH6IH L1ff.AWHM*^,LH9uHIB I9HFHH(Q1oRo%)RHDzo<E8l}0}9}3}9}0}3}9}3^~}9}3^Am^u8}9^}E8}+}9^^u8}9^^M8u+g }9LH H9HHI HH9t. KJLWHH*^,BH9wwfII93H~IB H9HB I9HFHH(#P1o9Po%QPHff.fzo<E8l}0}9}3}9}0}9}3}3^}9}3^E8}9^^E8}+}9^^u8}9^^M8u+g }9LH H9HHI HH9L iHLff.WHH*^,BH9w  (H1ff.A W*^, HH9u G1A W*^, HH9ufLLJLHGH6IH1fDA HMˆLH9uH~{IR I9:HVH,H1Hzom8D}9DH H9uHHI HH9tLfD HHHH9rwfIEI9cH~IR H9HP I9txHVHvnH1Hff.fzo u8D}9DH H9uHHI HH9hLf HHHH9wK1fDA  HH9u1A  HH9uf.LLJLHWH6IH1fDAHM؈LH9uHHB H9VHFHHH1Hzoe8D}9DH H9uHHI HH9tLfHHوJH9rwI5L9UH~HB I9IB H9HFHv|H1HDzom8D}9DH H9uHHI HH9fLff.HHوJH9w;1@A و HH9u1A و HH9ufDH LBLHGH6HH1fDA9HILH9uHHP H9vHVHhHo J1Hzo$]8Dt}9DH H9uHHI HH9t$Lff.:HHH9rwfI%L9DH~HP I9IQ H9HVHHo I1Hfzoe8Dt}9DH H9uHHI HH9PLf.:HHH9w+1fDA<HH9u1A<HH9uLLJLHWH6IH1fDAHMЈLH9uHHB H9VHFHHH1vHzoe8D}9DH H9uHHI HH9tLfHHшJH9rwI5L9UH~HB I9IB H9HFHv|H1vHDzom8D}9DH H9uHHI HH9fLff.HHшJH9w;1@A ш HH9u1A ш HH9ufDLHOL LZHLRH6I9UHHItItEMu IH~-1ff.@DD8HLLLH9ufIMuIuDH9SH~HP H9HQ @H9@}HWHoDD$H}xT$1o Ho$]8Dt}9DH H9uHHH1HH9t%Hff.@D8HHH9wwID H9HHJ H9HH @H9@HOHDL$H}xT$1o Ho e8D t}9DH H9uHHH 2HH9AHff.D8 HHH9wIH92H9HHr LH H9AI9@A Hq H9@I9AD A/HwH!Io 1IDo,1o42U8D1M8T2t0}9D0H I9uHHH9KD 2D8 10HH9(F8 BIL9u:F8BIL9u#HHGHvbHDL$}xT$HHo Ho8E8@H t@}9@H9uIILL9wI)ff.@D8 HJH9|H~HGHv_HDD$}xT$HHo J Ho(U8@H t@}9@H9uIILL9wI)fDD8HJH9|HHwHMIo 1Io42o<1M8D2E8T1t0}9D0H L9uHHHHHH9UwIILLLD 1D8 20HH9|HKHwHIo & 1Io42o<1M8D2E8T1t0}9D0H I9uHHHHHH9wIILLLD 2D8 10HH9|1D2D810HH9u11UHHLLRLJHGHWHH>ItEMu IH~-1ff.@DD8HLLLH9ufIMuIuDH9SH~HP H9HQ @H9@}HWHoDD$H}xT$1o Ho$]8Dt}9DH H9uHHH1HH9t%Hff.@D8HHH9wwID H9HHJ H9HH @H9@HOHDL$H}xT$1o Ho e8D t}9DH H9uHHH 2HH9AHff.D8 HHH9wIH92H9HHr LH H9AI9@A Hq H9@I9AD A/HwH!Io 1IDo,1o42U8D1M8T2t0}9D0H I9uHHH9KD 2D8 10HH9(F8 BIL9u:F8BIL9u#HHGHvbHDL$}xT$HHo Ho8E8@H t@}9@H9uIILL9wI)ff.@D8 HJH9|H~HGHv_HDD$}xT$HHo jHo(U8@H t@}9@H9uIILL9wI)fDD8HJH9|HHwHMIo 1Io42o<1M8D2E8T1t0}9D0H L9uHHHHHH9UwIILLLD 1D8 20HH9|HKHwHIo F1Io42o<1M8D2E8T1t0}9D0H I9uHHHHHH9wIILLLD 2D8 10HH9|1D2D810HH9u11UHHLLRLJHGHWHH>ItEMu I&H~-1ff.@DD8HLLLH9ufIMuIuDH9sH~HP H9HQ @H9@HWHDD$H1}x\$o Hff.o,U8Dt}9DH H9uHHH1HH9t!Hff.D:HHH9wwID H9HHJ H9HH @H9@HOHDL$H1}x\$o Ho$ ]8D t}9DH H9uHHH 2HH9=HD: HHH9wIH9RH9HHr LH H9AI9@A Hq H9@I9AD AgHwHYIo 1Io41o<2M8D1E8T2t0}9D0H I9uHHH9G@D 2D8 10HH9(F: BIL9u*F:BIL9uH HGHvvHDL$HH}x\$o Hff.@o0M8@H t@}9@H9uIILL9twI)ff.D: HJH9|H^HGHvgHDD$HH}x\$o fHo8E8@H t@}9@H9uIILL9wI)ff.D:HJH9|HHwHeIo 1Io<2o,1E8T2U8D1t0}9D0H L9uHHHHHH9-wIILLLD 1D8 20HH9|H HwHIo &1Io42o$1M8T2]8D1t0}9D0H I9uHHHHHH9zwIILLLD 2D8 10HH9|1D2D810HH9u11UHHLLRLJHGHWHH>ItEMu I&H~-1ff.@DD8HLLLH9ufIMuIuDH9sH~HP H9HQ @H9@HWHDD$H1}x\$o Hff.o,U8Dt}9DH H9uHHH1HH9t!Hff.D:HHH9wwID H9HHJ H9HH @H9@HOHDL$H1}x\$o Ho$ ]8D t}9DH H9uHHH 2HH9=HD: HHH9wIH9RH9HHr LH H9AI9@A Hq H9@I9AD AgHwHYIo 1Io41o<2M8T1E8D2t0}9D0H I9uHHH9G@D 2D8 10HH9(F: BIL9u*F:BIL9uH HGHvvHDL$HH}x\$o Hff.@o0M8@H t@}9@H9uIILL9twI)ff.D: HJH9|H^HGHvgHDD$HH}x\$o 6Ho8E8@H t@}9@H9uIILL9wI)ff.D:HJH9|HHwHeIo 1Io<2o,1E8D2U8T1t0}9D0H L9uHHHHHH9-wIILLLD 1D8 20HH9|H HwHIo 1Io42o$1M8D2]8T1t0}9D0H I9uHHHHHH9zwIILLLD 2D8 10HH9|1D2D810HH9u11UHHLLRLJHGHWHH>ItEMu I&H~-1ff.@DD8HLLLH9ufIMuIuDH9sH~HP H9HQ @H9@HWHDD$H1}x\$o `Hff.o,U8Dt}9DH H9uHHH1HH9t!Hff.D:HHH9wwID H9HHJ H9HH @H9@HOHDL$H1}x\$o wHo$ ]8D t}9DH H9uHHH 2HH9=HD: HHH9wIH9RH9HHr LH H9AI9@A Hq H9@I9AD AgHwHYIo 1Io41o<2M8T1E8D2t0}9D0H I9uHHH9G@D 2D8 10HH9(F: BIL9u*F:BIL9uH HGHvvHDL$HH}x\$o Hff.@o0M8@H t@}9@H9uIILL9twI)ff.D: HJH9|H^HGHvgHDD$HH}x\$o Ho8E8@H t@}9@H9uIILL9wI)ff.D:HJH9|HHwHeIo y1Io<2o,1E8D2U8T1t0}9D0H L9uHHHHHH9-wIILLLD 1D8 20HH9|H HwHIo 1Io42o$1M8D2]8T1t0}9D0H I9uHHHHHH9zwIILLLD 2D8 10HH9|1D2D810HH9u11UHHLLRLJHGHWHH>ItEMu I&H~-1ff.@DD8HLLLH9ufIMuIuDH9sH~HP H9HQ @H9@HWHDD$H1}x\$o 0Hff.o,U8Dt}9DH H9uHHH1HH9t!Hff.D:HHH9wwID H9HHJ H9HH @H9@HOHDL$H1}x\$o GHo$ ]8D t}9DH H9uHHH 2HH9=HD: HHH9wIH9RH9HHr LH H9AI9@A Hq H9@I9AD AgHwHYIo [1Io41o<2M8D1E8T2t0}9D0H I9uHHH9G@D 2D8 10HH9(F: BIL9u*F:BIL9uH HGHvvHDL$HH}x\$o Hff.@o0M8@H t@}9@H9uIILL9twI)ff.D: HJH9|H^HGHvgHDD$HH}x\$o Ho8E8@H t@}9@H9uIILL9wI)ff.D:HJH9|HHwHeIo I1Io<2o,1E8T2U8D1t0}9D0H L9uHHHHHH9-wIILLLD 1D8 20HH9|H HwHIo 1Io42o$1M8T2]8D1t0}9D0H I9uHHHHHH9zwIILLLD 2D8 10HH9|1D2D810HH9u11UHSHLLZHZLGHWHLItTMu IEM~41ff.9A8@HLM!HL9uH]fDIMuHuAH9M~̈́HB @H9HA @H9@IAHLo HD$}x\$1o,U8Dtt}9DH H9uLHH1HI9t$L8@HH!@rH9wwff.HI9MI@ @H9HB I9IAHLo HD$}x\$1ff.fzo$]8Dtt}9DH H9uLHIHI9Mf8HH!JI9wHH9I9GMHA Hz H9@H9 I@ H9L9@ @IAHLo 1HDo4zo<M8DE8Ttttt}9DH H9uLHI9!<@A<@!@4HI9C<!BIM9uB<!BIM9uMIAHvqLo HD$}x\$LLo0M8@H tt@}9@H9uMIMM97wM)A8I!A@KL9|M IAHvnLo \HD$}x\$HHo8E8@H tt@}9@H9uMILM9wI)9H!ЈAJL9|gM^IAHLo 1Hzo<o,E8DU8Ttttt}9DH H9uLHHIHL9wHHHIHA<<@! HL9|MIAHLo 1Hzo4o$M8D]8Ttttt}9DH H9uLHHIHL9 wHHHHI<@A<@!@4HL9|1<@A<@!@4HL9u11fDUHHLLZLRHGHWHLItEMu I&M~,1ff.@9@ :HLLLL9uIMuIu:H9uM~HP H9HQ @H9@IQH@|$L1}x\$o 1Hff.fo,U8Dt}9DH H9uLHH1HI9t#Lff.@ 2HHH9wwfDI9H9MHJ H9HH @H9@IIH@|$L1}x\$o HH@o$ ]8D t}9DH H9uLHH 2HI9?L@ 1HHH9wfDIH9SH9MHr L@ H9@I9@ Hq H9@I9AD @dIqHVLo \1Hfo41o<2M8D1E8T2t0}9D0H H9uLHI9I@<1@ <20HI9+B BIM9u(B 4BIM9uMIAHvsL@|$HH}x\$o Hff.o0M8@H t@}9@H9uMILM9vwI)ff. HJL9|M\IAHvgL@|$HH}x\$o Ho8E8@H t@}9@H9uMILM9wI)ff.f HJL9|MIqH_Lo H1Ho<2o,1E8D2U8T1t0}9D0H H9uLHHHHL9.wHHHHH 2 70HL9|M IqHLo 1Ho42o$1M8D2]8T1t0}9D0H H9uLHHHHL9~wHHHHH1 70HL9|1<1@ <20HL9u11ff.fSLLGHOH>HLZLRH~21ff.A9A8@HIM1LH9u[fSHLGLHZHOLZLL9t51M~'fD9@8BHLLAIL9u[DMuI9uM~1@9@8BHLL9u[SHLGLHZHOLZLL9t51M~'fD9@8GHLLAIL9u[DMuI9uM~1@9@8GHLL9u[AUATUSLLLOLGL"HjHZM~X1AAtXA tODEfDttuA0HMIII9u[]A\A]fAf.AWAVAUATUSHL6L/HoLgHJH:LzM~P1$@AEA$HIHMI9t(UuHL$H<$2A$H<$HL$fH[]A\A]A^A_ÐHOHz1HH~f.Hf1HH9uff.LLJHHWH>It%H~1fD0HLf2LH9ufIuH9tH~1fD4Hf4JHH9u1H~4Hf4JHH9ufDLLJHOHH>It-H~ 1fDHLfLH9uIuH9 H~HAH9HB@H9@}HGHoH1HHofHH9uHHH4HHH9x2f1HpH9brfqHpH9JrfqHpH92rfqHpH9rfqHpH9r Hfq H9B fA HHAH9HGHH1HHDofHH9uHHH4HHH9x2f1HpH9brfqHpH914Bf4AHH9u14Bf4AHH9u@AWAVAUATUSH LBHHoL&HMjML$H1LIIHIHLIIMHHHI9@MHHHHHIHH9@]ISLLd$IIHHHL9\$Ld$HH\$Hl$LHHHLHHI9'fH*f(^,fEHBLI9ff(H*^,fEHBLI9ff(H*^,fEHBLI9ff(H*^,fEHBLI9~kff(H*^,fEHBLI9~Aff(HH*^,fELI9~f*^,fE[]A\A]A^A_fIoH9jM~HCH9HEH9ID$HLf(1fHH@ofof(f(fefofafifofpf^f(f(f^fff(flf^fpf^ffflfofafifofafifaDHH9_LHHHHI9f*f(^,fUHPI9Sff(*^,fUHPI9xSff(*^,fUHPI9OSff(*^,fUHPI9&Sff(*^,fUHPI9S ff(H*^,fU I9C f*^,fE  1fDff(HH*^,fELI9u[]A\A]A^A_MfHCH9ID$HLf(31fHHDofof(f(fefofafifofpf^f(f(f^fff(flf^fpf^ffflfofafifofafifaDHH9_LHHHHI9qf>*f(^,fUHPL9ASff(*^,fUHPL9Sff(*^,fUHPL9 1@Cff(*^,fTEHI9u 1Cff(*^,fTEHL9u|LLJHHWH>It%H~1fD0HLf2LH9ufIuH9H~HHH9HJ@H9@HOHH1HHo HH9uHHH4 HHH9t0f2HqH9rpfrHqH9]pfrHqH9HpfrHqH93pfrHqH9p Hfr H9 @ fB HHHH9rSHOHvIH1HHf.o  HH9u14Hf4JHH9u14Hf4JHH9uf.LLJHOHH>It%H~1fDHLfLH9uIuH9H~HBH9HA@H9@HGHyH1fHHofofHH9uHHH4HHH9s2f1HpH9^rfqHpH9GrfqHpH90rfqHpH9rfqHpH9r Hfq H9B fA HHBH9HGHH1fHH@ofofHH9uHHH4HHH9s2f1HpH9^rfqHpH91D4Bf4AHH9u14Bf4AHH9ufDLLJHGHH6It%H~1fDf:HLLH9uÐIuH9H~H rH9H 0@H9@HNHvHfo1ffoHoJoLJfufufffffgHH9uHHHJHH9Sf:HyH9?fzHy@H9)fzHy@H9fzHy@H9fzHy@H9fz Hy@H9fz Hy@H9fzHy@H9fzHy @H9fzHy @ H9yfzHy @ H9cfzHy @ H9MfzHy @ H97fz@ HH9!fz@HH pH9H 0@H9@HNHHfo)1ffoHoJoLJfufufffffgHH9uHHHJHH9sf:HyH9_fzHy@H9 1fIt%H~1fDHLfLH9uIuH9 H~HAH9HB@H9@{HGHmH1fvHHofHH9uHHH4HHH9w2f1HpH9brfqHpH9KrfqHpH94rfqHpH9rfqHpH9r Hfq H9B fA HHAH9HGHH1fvHHofHH9uHHH4HHH92f1HpH9jrfqHpH914Bf4AHH9u14Bf4AHH9ufDLLOHOLLZHzH6M9ItDMu HH~%1fDHfAHfAMMH9uf.HHuIuM9H~I@I9IAI9HFHT$H1HHfnL$fafpAofAHH9uHHH IIH9SAfA HHH9A@ fA@ [1H%fDA@ GfAAHH9u[H1A@ GfAAHH9u[SLLOLHZHLZH6M9ItCMu IH~&1DAHMLfAIH9u[IMuHuM9mH~IAI9I@I9 HFHHHcf1HH\$~\$HAo fofefofafifffofafifofifafaAHH9uHHHIIH9!AfAHPH9 APfAQHPH9APfAQHPH9APfAQHPH9APfAQHPH9AP HfAQ H9A@ fAA [M.L9%AH~1HLH9ufA[HAI9HDB WfCQII9u[HM9I9H1A@ GfAAHH9u[CXfCYII9uHH4wfDHfWH9u[H`HFHHHcfLHH\$~\$HLofoHfefofafifffofafifofifafa@H9uIIOXI9AfAICH9A@fA@ICH9A@fA@ICH9A@fA@ICH9pA@fA@ICH9WA@ IfA@ L9>A@ fA@ [1H%fDA@ GfAAHH9u[H1A@ GfAAHH9u[LLJLRHOHWHH>It=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1fo͊foIfnd$fafpfoPoLPfufufffffgHL9uHHHPHH92f90LBL9f9pLBAL9 f9pLBAL9f9pLBAL9f9pLBAL9f9p LBAL9f9p LBAL9f9pLBAL9f9pLB AL9wf9pLB A L9bf9pLB A L9Mf9pLB A L98f9pLB A L9#f9pA HH9f9pAI0H9zHHzH9H9AH9A+HGHt$I1foԈfoIfnd$fafpfoBoLBfufufffffgHL9uHHHBHH92f92L@L9f9rL@AL9 f9rL@AL9f9rL@AL9f9rL@AL9f9r L@AL9f9r L@AL9f9rL@AL9f9rL@ AL9wf9rL@ A L9bf9rL@ A L9Mf9rL@ A L98f9rL@ A L9#f9rA HH9f9rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfofo1If.opo,roLpotrfufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9AP f9P HVAH9xAP f9P HVAH9^APf9PHVAH9DAPf9PHV AH9*APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB94BBIL9ufB94HB IL9uHdHzf92HH9uHDHxf90HH9uH$HwH*Ifo>fo1IoIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1foMfo%Ifnd$fafpfoPoLPfufufffffgHL9uHHHPHH92f90LBL9f9pLBAL9 f9pLBAL9f9pLBAL9f9pLBAL9f9p LBAL9f9p LBAL9f9pLBAL9f9pLB AL9wf9pLB A L9bf9pLB A L9Mf9pLB A L98f9pLB A L9#f9pA HH9f9pAI0H9zHHzH9H9AH9A+HGHt$I1foT}fo,}Ifnd$fafpfoBoLBfufufffffgHL9uHHHBHH92f92L@L9f9rL@AL9 f9rL@AL9f9rL@AL9f9rL@AL9f9r L@AL9f9r L@AL9f9rL@AL9f9rL@ AL9wf9rL@ A L9bf9rL@ A L9Mf9rL@ A L98f9rL@ A L9#f9rA HH9f9rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo8{fo{1If.opo,roLpotrfufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9AP f9P HVAH9xAP f9P HVAH9^APf9PHVAH9DAPf9PHV AH9*APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB94BBIL9ufB94HB IL9uHdHzf92HH9uHDHxf90HH9uH$HwH*Ifoxfox1IoIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1fosfosIfnd$fafpfoPoLPfefefffffgHL9uHHHPHH92f;0LBL9f;pLBAL9 f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9f;pLB AL9wf;pLB A L9bf;pLB A L9Mf;pLB A L98f;pLB A L9#f;pA HH9f;pAI0H9zHHzH9H9AH9A+HGHt$I1foqfoqIfnd$fafpfo,BotBfofofefefffffgHL9uHHHBHH9*f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9f;rL@ AL9of;rL@ A L9Zf;rL@ A L9Ef;rL@ A L90f;rL@ A L9f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfoofoo1If.omfom1IopoIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1foMhfo%hIfnd$fafpfo,PotPfofofefefffffgHL9uHHHPHH9*f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9f;pLB AL9of;pLB A L9Zf;pLB A L9Ef;pLB A L90f;pLB A L9f;pA HH9f;pAI0H9zHHzH9H9AH9A+HGHt$I1foTffo,fIfnd$fafpfoBoLBfefefffffgHL9uHHHBHH92f;2L@L9f;rL@AL9 f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9f;rL@ AL9wf;rL@ A L9bf;rL@ A L9Mf;rL@ A L98f;rL@ A L9#f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo8dfod1If.oIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1fo\fo\Ifnd$fafpfo,PotPfofofefefffffgHL9uHHHPHH9*f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9f;pLB AL9of;pLB A L9Zf;pLB A L9Ef;pLB A L90f;pLB A L9f;pA HH9f;pAI0H9zHHzH9H9AH9A+HGHt$I1foZfoZIfnd$fafpfoBoLBfefefffffgHL9uHHHBHH92f;2L@L9f;rL@AL9 f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9f;rL@ AL9wf;rL@ A L9bf;rL@ A L9Mf;rL@ A L98f;rL@ A L9#f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfoXfoX1If.oVfoV1Ioro,poLrotpfefefffffg1HI9uHHL6HLLH9DLFfD9I9DRLFfD9PAI9nDRLFfD9PAI9SDRLFfD9PAI98DPLFfD9RAI9DR LFfD9P AL9DR LFfD9P AL9DRLFfD9PAL9DRLF fD9PAL9DRLF fD9PA L9DRLF fD9PA L9{DRLF fD9PA L9`DRLF fD9PA L9EDRfD9PA HH9*@f9BAHHwHIfo.TfoT1IoIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1foMQfo%QIfnd$fafpfoPoLPfefefffffgHL9uHHHPHH92f;0LBL9f;pLBAL9 f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9f;pLB AL9wf;pLB A L9bf;pLB A L9Mf;pLB A L98f;pLB A L9#f;pA HH9f;pAI0H9zHHzH9H9AH9A+HGHt$I1foTOfo,OIfnd$fafpfo,BotBfofofefefffffgHL9uHHHBHH9*f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9f;rL@ AL9of;rL@ A L9Zf;rL@ A L9Ef;rL@ A L90f;rL@ A L9f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo8MfoM1If.oMuIu2H9M~J@H9J@H9@zIPHlt$L1ffo7fo7Hfnd$fafpfDoPoLPfffufufffffgHH9uLHHPHI9 f 8HzI9 f xHzAI9f xHzAI9f xHzAI9f xHzAI9f x HzAI9f x HzAI9f xHzAI9jf xHz AI9Sf xHz A I9HLZLRH~,1fA9fA8@HIM1LH9u[ff.@LLJHOHH>IH1fDHLfLH9uHHA H9HGHH1HHfDom8D}9DH H9uHHH4HHH9t*2f1HpH9}rfqHpH9wDI%H9FH~HA H9HB @H9@HGHH1HHff.@o u8D}9DH H9uHHH4HHH9V2f1HpH9@rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9hrfqHp H9PrfqHp H98rfqHp H9 rHfqH9BfAw14Bf4AHH9u14Bf4AHH9u@UHAWAVAUATSHH LBHLgL.HM1MMH1LIIHIHLIIMHHLI9@MHHLHHIHH9@ILLl$HIIHMHHL9\$Ll$HH\$Ld$LHHHLHII9W"H*^,fA$HBMI9dWH*^,fA$HBMI99WH*^,fA$HBMI9WH*^,fA$HBMI9WH*^,fA$HBMI9WHH*^,fA$MI9W*^,fA$wHe[A\A]A^A_]M~HC H9LIEH>L('o(1HHf.o<E8D}#}9}9}#^^u8}9^^]8}+x}9DH H9mLHHHII9tsW *^,fA$HPL9}JSW*^,fAT$HPL9}'SW*^,fAT$HPL9wHe[A\A]A^A_]fI6L9vM^HC I9ID$ H9}IEHoL(^&ov&1HHff.o<E8D}#}9}9}#^^u8}9^^]8}+x}9DH H9mLHHHII9W ,*^,fA$HPI9SW*^,fAT$HPI9{SW*^,fAT$HPI9TSW*^,fAT$HPI9-SW*^,fAT$HPI9S W*^,fAT$ HPI9S W*^,fAT$ HPI9SW*^,fAT$HPI9SW*^,fAT$HP I9jSW*^,fAT$HP I9CSW*^,fAT$HP I9SW*^,fAT$HP I9SW*^,fAT$HP I9SWH*^,fAT$I9CW*^,fAD$wf 1fDWHH*^,fA$MI9uHe[A\A]A^A_] 1SW*^,fATHI9u i1SW*^,fATHL9ubLLJHHWH>It5H 1f.0HLf2LH9uf.IuH9HHH H9HJ @H9@HOHH1HHff.@o u8D }9D H H9uHHH4 HHH9tB0f2HqH9~3pfrHqH9~"pfrHqH9~pfrHqH9wpfrHqH9~p fr HqH9~p fr HqH9~pfrHqH9~pfrHq H9~pfrHq H9~pfrHq H9~pfrHq H9ppfrHq H9[pHfrH9F@fBwH4HH H9r_HOHvUH1HHfDom8D }9D H H9u1fD4Hf4JHH9u14Hf4JHH9uf.LLJHOHH>IH1fDHLfLH9uHHB H9HGHH1HHoe8D}9DH H9uHHH4HHH9t(2f1HpH9}rfqHpH9wI%H9EH~HB H9HA @H9@HGHH1HHff.om8D}9DH H9uHHH4HHH9T2f1HpH9?rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9prfqHp H9YrfqHp H9BrfqHp H9+rHfqH9BfAw1ff.@4Bf4AHH9u14Bf4AHH9ufDLLJHGHH6It5H#1f.f:HLLH9ufIuH9HH rH9H 0@H9@HNHHo1oHff.@o,JotJ U8DJM8LJ0uug}9DH H9uHHHJHH9tH)H rf:HHH9wwH~H pH<0H9AH9AHNHIo1oIf.oIH1fDHLfLH9uHHA H9HGHH1vHHoe8D}9DH H9uHHH4HHH9t(2f1HpH9}rfqHpH9wI%H9EH~HA H9HB @H9@HGHH1vHHff.om8D}9DH H9uHHH4HHH9T2f1HpH9?rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9prfqHp H9YrfqHp H9BrfqHp H9+rHfqH9BfAw1ff.@4Bf4AHH9u14Bf4AHH9ufDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9fA9HxH9 yfAyHxH9 yfAyHxH9 yfAyHxH9 yfAyHxH9 y fAy HxH9 y fAy HxH9 yfAyHxH9x yfAyHx H9 yfAyHx H9 yfAyHx H9 yfAyHx H9 yfAyHx H9 yHfAyH9! fQfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 fAfAHPH9QfAPfAQHPH9QfAPfAQHPH9QfAPfAQHPH9QfAPfAQHPH9Q fAP fAQ HPH9Q fAP fAQ HPH9pQfAPfAQHPH9QfAPfAQHP H9gQfAPfAQHP H9GQfAPfAQHP H9'QfAPfAQHP H9QfAPfAQHP H9RQHfAPfAQH9<AfA@fAAwAxfAyHH9u#BQfCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBfH9IBfQH9qIBfQH9`IBfQH9OIBfQH9>IBfQ H9-IBfQ H9IBfQH9 IB fQH9IB fQH9IB fQH9IB fQH9IB fQH9IfQL9fQHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfAH9#HGfAPH9HGfAPH9HGfAPH9HGfAPH9HGfAP H9HGfAP H9HGfAPH9HG fAPH9HG fAPH9HG fAPH9oHG fAPH9]HG fAPH9KHfAPH99fAPH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwAffAHPH9APfQfAQHPH9QfAPfAQHPH9jQfAPfAQHPH9OQfAPfAQHPH94AP fQ fAQ HPH9Q fAP fAQ HPH9QfAPfAQHPH9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9wQfAPfAQHP H9\QHfAPfAQH9AA@fAfAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwfAfAHPH9QfAPfAQHPH9QfAPfAQHPH9iQfAPfAQHPH9NQfAPfAQHPH93Q fAP fAQ HPH9Q fAP fAQ HPH9QfAPfAQHPH9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9vQfAPfAQHP H9[QHfAPfAQH9@AfA@fAA1AfA@fAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9jUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9 f+9fA9HxH9' f+yfAyHxH9( f+yfAyHxH9 f+yfAyHxH9 f+yfAyHxH9 f+y fAy HxH9 f+y fAy HxH9 f+yfAyHxH9 f+yfAyHx H9B f+yfAyHx H94 f+yfAyHx H9 f+yfAyHx H9 f+yfAyHx H9 Hf+yfAyH9x f+QfAQwfIYM9I9HhI@ Iy I9I9 HA I9H9@ n HFH` H1HHff.@zo$o,]8DU8Lx}9DH H9uHHHIHIH9p Af+fAHPH9S APf+QfAQHPH93 APf+QfAQHPH9. APf+QfAQHPH9' APf+QfAQHPH9 AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9APf+QfAQHP H9APf+QfAQHP H9APf+QfAQHP H9~APf+QfAQHP H9^APf+QfAQHP H9APHf+QfAQH9A@f+AfAAwAx)fAyHH9ufB+QfCQIL9uHHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9wf+fIBH9mf+AfAIBH9Vf+AfAIBH9?f+AfAIBH9(f+AfAIBH9f+A fA IBH9f+A fA IBH9f+AfAIBH9f+AfAIB H9f+AfAIB H9f+AfAIB H9f+AfAIB H9pf+AfAIB H9YIf+AfAL9Bf+QfQH/HFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA)H9HGfA)PH9HGfA)PH9HGfA)PH9HGfA)PH9tHGfA)P H9bHGfA)P H9PHGfA)PH9>HG fA)PH9,HG fA)PH9HG fA)PH9HG fA)PH9HG fA)PH9HfA)PH9fA)PHHFHH1HHzo<o$E8D]8Lx}9DH H9uHHHIHIH9cwAf+fAHPH99APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9|APf+QfAQHP H9aAPf+QfAQHP H9FAPf+QfAQHP H9+APf+QfAQHP H9APf+QfAQHP H9APHf+QfAQH9A@f+AfAAHHFHnH1HHzo,o4U8DM8Lx}9DH H9uHHHIHIH9vwAf+fAHPH98APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9{APf+QfAQHP H9`APf+QfAQHP H9EAPf+QfAQHP H9*APf+QfAQHP H9APf+QfAQHP H9APHf+QfAQH9A@f+AfAA1A@f+AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwff.LLOHOLLZHzH6M9jUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9!fA9HxH9 y!fAyHxH9 y!fAyHxH9 y!fAyHxH9 y!fAyHxH9 y !fAy HxH9 y !fAy HxH9 y!fAyHxH9x y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 yH!fAyH9! f#QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af#fAHPH9APf#QfAQHPH9APf#QfAQHPH9APf#QfAQHPH9APf#QfAQHPH9AP f#Q fAQ HPH9AP f#Q fAQ HPH9pAPf#QfAQHPH9APf#QfAQHP H9gAPf#QfAQHP H9GAPf#QfAQHP H9'APf#QfAQHP H9APf#QfAQHP H9RAPHf#QfAQH9<A@f#AfAAwAx!fAyHH9u#BQ!fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf!H9IBf!QH9qIBf!QH9`IBf!QH9OIBf!QH9>IBf!Q H9-IBf!Q H9IBf!QH9 IB f!QH9IB f!QH9IB f!QH9IB f!QH9IB f!QH9If!QL9f!QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA!H9#HGfA!PH9HGfA!PH9HGfA!PH9HGfA!PH9HGfA!P H9HGfA!P H9HGfA!PH9HG fA!PH9HG fA!PH9HG fA!PH9oHG fA!PH9]HG fA!PH9KHfA!PH99fA!PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA#fAHPH9QfA#PfAQHPH9APf#QfAQHPH9jAPf#QfAQHPH9OAPf#QfAQHPH94Q fA#P fAQ HPH9AP f#Q fAQ HPH9APf#QfAQHPH9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9wAPf#QfAQHP H9\APHf#QfAQH9AAfA#@fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf#fAHPH9APf#QfAQHPH9APf#QfAQHPH9iAPf#QfAQHPH9NAPf#QfAQHPH93AP f#Q fAQ HPH9AP f#Q fAQ HPH9APf#QfAQHPH9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9vAPf#QfAQHP H9[APHf#QfAQH9@A@f#AfAA1A@f#AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9 fA9HxH9 y fAyHxH9 y fAyHxH9 y fAyHxH9 y fAyHxH9 y fAy HxH9 y fAy HxH9 y fAyHxH9x y fAyHx H9 y fAyHx H9 y fAyHx H9 y fAyHx H9 y fAyHx H9 yH fAyH9! f QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af fAHPH9APf QfAQHPH9APf QfAQHPH9APf QfAQHPH9APf QfAQHPH9AP f Q fAQ HPH9AP f Q fAQ HPH9pAPf QfAQHPH9APf QfAQHP H9gAPf QfAQHP H9GAPf QfAQHP H9'APf QfAQHP H9APf QfAQHP H9RAPHf QfAQH9<A@f AfAAwAx fAyHH9u#BQ fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf H9IBf QH9qIBf QH9`IBf QH9OIBf QH9>IBf Q H9-IBf Q H9IBf QH9 IB f QH9IB f QH9IB f QH9IB f QH9IB f QH9If QL9f QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA H9#HGfA PH9HGfA PH9HGfA PH9HGfA PH9HGfA P H9HGfA P H9HGfA PH9HG fA PH9HG fA PH9HG fA PH9oHG fA PH9]HG fA PH9KHfA PH99fA PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA fAHPH9QfA PfAQHPH9APf QfAQHPH9jAPf QfAQHPH9OAPf QfAQHPH94Q fA P fAQ HPH9AP f Q fAQ HPH9APf QfAQHPH9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9wAPf QfAQHP H9\APHf QfAQH9AAfA @fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf fAHPH9APf QfAQHPH9APf QfAQHPH9iAPf QfAQHPH9NAPf QfAQHPH93AP f Q fAQ HPH9AP f Q fAQ HPH9APf QfAQHPH9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9vAPf QfAQHP H9[APHf QfAQH9@A@f AfAA1A@f AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 91fA9HxH9 y1fAyHxH9 y1fAyHxH9 y1fAyHxH9 y1fAyHxH9 y 1fAy HxH9 y 1fAy HxH9 y1fAyHxH9x y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 yH1fAyH9! f3QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af3fAHPH9APf3QfAQHPH9APf3QfAQHPH9APf3QfAQHPH9APf3QfAQHPH9AP f3Q fAQ HPH9AP f3Q fAQ HPH9pAPf3QfAQHPH9APf3QfAQHP H9gAPf3QfAQHP H9GAPf3QfAQHP H9'APf3QfAQHP H9APf3QfAQHP H9RAPHf3QfAQH9<A@f3AfAAwAx1fAyHH9u#BQ1fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf1H9IBf1QH9qIBf1QH9`IBf1QH9OIBf1QH9>IBf1Q H9-IBf1Q H9IBf1QH9 IB f1QH9IB f1QH9IB f1QH9IB f1QH9IB f1QH9If1QL9f1QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA1H9#HGfA1PH9HGfA1PH9HGfA1PH9HGfA1PH9HGfA1P H9HGfA1P H9HGfA1PH9HG fA1PH9HG fA1PH9HG fA1PH9oHG fA1PH9]HG fA1PH9KHfA1PH99fA1PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA3fAHPH9QfA3PfAQHPH9APf3QfAQHPH9jAPf3QfAQHPH9OAPf3QfAQHPH94Q fA3P fAQ HPH9AP f3Q fAQ HPH9APf3QfAQHPH9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9wAPf3QfAQHP H9\APHf3QfAQH9AAfA3@fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf3fAHPH9APf3QfAQHPH9APf3QfAQHPH9iAPf3QfAQHPH9NAPf3QfAQHPH93AP f3Q fAQ HPH9AP f3Q fAQ HPH9APf3QfAQHPH9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9vAPf3QfAQHP H9[APHf3QfAQH9@A@f3AfAA1A@f3AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDUHSHLLOLHZHLZH6M9ItKMu IH~&1DAHMLfAIH9uH]ff.IMuHuM9 H~I@ I9IA I9~HFHpHHcoҸ1HH\$~\$Hff.fzo4M8L}#}9}#}+x}9DH H9uHHHIIH9xAfAHPH9APfAQHPH9APfAQHPH9APfAQHPH9APfAQHPH9AP fAQ HPH9AP fAQ HPH9APfAQHPH9APfAQHP H9APfAQHP H97APfAQHP H9APfAQHP H9$APfAQHP H9APHfAQH9A@fAAwfDMFL9=AH~1HLH9ufATDHAI9?H/IA H9HG I9HFHHT$o71H}X\$HfDo,U8L}#}9}#eGeG}+x}9DH H9uHHH HIH9HHfAH9o OHHfAYH9} OHHfAYH9[ OHHfAYH9Q OHHfAYH9o O HHfAY H9e O HHfAY H9C OHHfAYH99 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHfAYH9 OfAQwHM9 I9c HI@ II I9I9 HG I9H9 Ȅ HFH Ho³1HHzo<E8Lo<E8\}#}9}#}9}#}#}GuG}+x}9DH H9uHHHIHIH9 AfAHPH9t APOfAQHPH9O APOfAQHPH9Q APOfAQHPH9T APOfAQHPH9/ AP O fAQ HPH9 AP O fAQ HPH9 APOfAQHPH9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOHfAQH9 A@OfAAw8fCXfCYIL9uB WfCQIL9uHHFHHT$}X\$HHoHHff.@o0M8HH }#}9}#eGeG}+@}9@H9uIIJItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1ooIfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1ooMIfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1o5oIfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1ooIfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1ouyo-yIfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1osorIfoHLZLRH~41ff.fA9fA8@HIM1LH9u[HLGL LZHLRH6L9t61H~'f9fMHLLfAMH9uMuM9uH~1@DfD9ALHLH9uf@HLGL LZHLRH6L9t61H~'f9fNHLLfAMH9uMuM9uH~1@DfD9AOHLH9uf@ATUSLLLGLHHZHjMAA1AfxOft{ftuDEDftҨtfufHMIHI9tOAAfy!H5YH 0H8'[]A\f.ffD[]A\ff.AWAVAUATUSHL6L/HoLgLHzLzM~P1#@AEfA$HMHMI9t)MfuH|$L$b1L$H|$fA$H[]A\A]A^A_ÐHOHz1HH~f.Hf1HH9uff.LLJHHWH>It%H~1fD0HLf2LH9ufIuH9tH~1fD4Hf4JHH9u1H~4Hf4JHH9ufDLLJHOHH>It-H~ 1fDHLfLH9uIuH9 H~HAH9HB@H9@}HGHoH1HHofHH9uHHH4HHH9x2f1HpH9brfqHpH9JrfqHpH92rfqHpH9rfqHpH9r Hfq H9B fA HHAH9HGHH1HHDofHH9uHHH4HHH9x2f1HpH9brfqHpH914Bf4AHH9u14Bf4AHH9u@AWAVAUATUSH LBHHoL&HwM`ML$H1LIIHIHLIIMHHHI9@MHHHHHIHH9@EI;LLd$IIHHHL9\$Ld$HH\$Hl$LHHHLHHI9'f.PH*f(^,fEHBLI9ff(H*^,fEHBLI9ff(H*^,fEHBLI9ff(H*^,fEHBLI9~kff(H*^,fEHBLI9~Aff(HH*^,fELI9~f*^,fE[]A\A]A^A_IH9bM~HCH9HEH9$ID$HLf(S1fHH@o f(f(f(fofifaf^fpf^ff(fflfpf^f^ffflfofafifofafifaDHH9oLHHHHI9fM*f(^,fUHPI9Sff(*^,fUHPI9Sff(*^,fUHPI9eSff(*^,fUHPI9<Sff(*^,fUHPI9S ff(*^f(,HfU I9C f*^,fE  L1fDff(HH*^,fELI9u[]A\A]A^A_MtHCH9ID$HLf({Q1fHHDo f(f(fofifaf^fpf(f(f^fff(flf^fpf^ffflfofafifofafifaDHH9kLHHHHI9fK*f(^,fUHPL9[Sff(*^,fUHPL92Sff(*^,fUHPL9 Sff(*^,fUHPI9Sff(*^,fUHPI9S ff(*^f( J1fDCff(*^,fTEHI9u_ mJ1Cff(*^,fTEHL9u*LLJHHWH>It%H~1fD0HLf2LH9ufIuH9H~HHH9HJ@H9@HOHH1HHo HH9uHHH4 HHH9t0f2HqH9rpfrHqH9]pfrHqH9HpfrHqH93pfrHqH9p Hfr H9 @ fB HHHH9rSHOHvIH1HHf.o  HH9u14Hf4JHH9u14Hf4JHH9uf.LLJHOHH>It%H~1fDHLfLH9uIuH9H~HAH9HB@H9@HGHyH1fHHofofHH9uHHH4HHH9s2f1HpH9^rfqHpH9GrfqHpH90rfqHpH9rfqHpH9r Hfq H9B fA HHAH9HGHH1fHH@ofofHH9uHHH4HHH9s2f1HpH9^rfqHpH91D4Bf4AHH9u14Bf4AHH9ufDLLJHGHH6It%H~1fDf:HLLH9uÐIuH9H~H rH9H 0@H9@HNHvHfoJ1ffoJHoJoLJfufufffffgHH9uHHHJHH9Sf:HyH9?fzHy@H9)fzHy@H9fzHy@H9fzHy@H9fz Hy@H9fz Hy@H9fzHy@H9fzHy @H9fzHy @ H9yfzHy @ H9cfzHy @ H9MfzHy @ H97fz@ HH9!fz@HH pH9H 0@H9@HNHHfo I1ffoHHoJoLJfufufffffgHH9uHHHJHH9sf:HyH9_fzHy@H9 1fIt%H~1fDHLfLH9uIuH9 H~HAH9HB@H9@{HGHmH1fvHHofHH9uHHH4HHH9w2f1HpH9brfqHpH9KrfqHpH94rfqHpH9rfqHpH9r Hfq H9B fA HHAH9HGHH1fvHHofHH9uHHH4HHH92f1HpH9jrfqHpH914Bf4AHH9u14Bf4AHH9ufDLLOHOLLZHzH6M9ItDMu HH~%1fDHfAHfAMMH9uf.HHuIuM9H~I@I9IAI9HFHT$H1HHfnL$fafpAofAHH9uHHH IIH9SAfA HHH9L95AH~1HLH9ufA[fDHAI9H'DB WfCQII9u[HM9I9H1A@ GfAAHH9u[CXfCYII9uHH4wfDHfWH9u[HpHFHvxHHcfLHH\$~d$HLoHfofifafffofafifofifafa@H9uIIOXI9AfAICH9A@fA@ICH9A@fA@ICH9A@fA@ICH9A@fA@ICH9sA@ IfA@ L9ZA@ fA@ [1HAf.A@ GfAAHH9u[H1A@ GfAAHH9u[ff.@SLLOLHZHLZH6M9ItCMu IH~&1DAHMLfAIH9u[IMuHuM9]H~IAI9I@I9HFHHHcf1HH\$~d$HAo fofifafffofafifofifafaAHH9uHHHIIH9)AfAHPH9APfAQHPH9APfAQHPH9APfAQHPH9APfAQHPH9AP HfAQ H9A@ fAA [M>L95AH~1HLH9ufA[fDHAI9H'DB WfCQII9u[HM9I9H1A@ GfAAHH9u[CXfCYII9uHH4wfDHfWH9u[HpHFHvxHHcfLHH\$~d$HLoHfofifafffofafifofifafa@H9uIIOXI9AfAICH9A@fA@ICH9A@fA@ICH9A@fA@ICH9A@fA@ICH9sA@ IfA@ L9ZA@ fA@ [1HAf.A@ GfAAHH9u[H1A@ GfAAHH9u[ff.@LLJLRHOHWHH>It=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1fo fo Ifnd$fafpfoPoLPfufufffffgHL9uHHHPHH92f90LBL9f9pLBAL9 f9pLBAL9f9pLBAL9f9pLBAL9f9p LBAL9f9p LBAL9f9pLBAL9f9pLB AL9wf9pLB A L9bf9pLB A L9Mf9pLB A L98f9pLB A L9#f9pA HH9f9pAI0H9zHHzH9H9AH9A+HGHt$I1fo fo Ifnd$fafpfoBoLBfufufffffgHL9uHHHBHH92f92L@L9f9rL@AL9 f9rL@AL9f9rL@AL9f9rL@AL9f9r L@AL9f9r L@AL9f9rL@AL9f9rL@ AL9wf9rL@ A L9bf9rL@ A L9Mf9rL@ A L98f9rL@ A L9#f9rA HH9f9rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfofo1If.opo,roLpotrfufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9AP f9P HVAH9xAP f9P HVAH9^APf9PHVAH9DAPf9PHV AH9*APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB94BBIL9ufB94HB IL9uHdHzf92HH9uHDHxf90HH9uH$HwH*Ifo>fo1IoIt=Mu I.H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A8HWH*t$I1foMfo%Ifnd$fafpfoPoLPfufufffffgHL9uHHHPHH92f90LBL9f9pLBAL9 f9pLBAL9f9pLBAL9f9pLBAL9f9p LBAL9f9p LBAL9f9pLBAL9f9pLB AL9wf9pLB A L9bf9pLB A L9Mf9pLB A L98f9pLB A L9#f9pA HH9f9pAI0H9zHHzH9H9AH9A+HGHt$I1foT fo, Ifnd$fafpfoBoLBfufufffffgHL9uHHHBHH92f92L@L9f9rL@AL9 f9rL@AL9f9rL@AL9f9rL@AL9f9r L@AL9f9r L@AL9f9rL@AL9f9rL@ AL9wf9rL@ A L9bf9rL@ A L9Mf9rL@ A L98f9rL@ A L9#f9rA HH9f9rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo8 fo 1If.opo,roLpotrfufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9AP f9P HVAH9xAP f9P HVAH9^APf9PHVAH9DAPf9PHV AH9*APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB94BBIL9ufB94HB IL9uHdHzf92HH9uHDHxf90HH9uH$HwH*Ifo fo 1IoIt=Mu I>H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A`HWHRt$I1ffo fo Ifnd$fafpfDoPoLPfffufufffffgHL9uHHHPHH9"f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9|f;pLB AL9gf;pLB A L9Rf;pLB A L9=f;pLB A L9(f;pLB A L9f;pA HH9f;pAI0H9HHzH9H9AH9ACHGH5t$I1ffo fo Ifnd$fafpDo4Bo|BfofofffufufffffgHL9uHHHBHH9f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9lf;rL@ AL9Wf;rL@ A L9Bf;rL@ A L9-f;rL@ A L9f;rL@ A L9f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo 1ffoj IfDopo4roLpo|rfffufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9jAP f9P HVAH9PAP f9P HVAH96APf9PHVAH9APf9PHV AH9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB;4BBIL9ufB;4HB IL9uHIt=Mu I>H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9APHWHBt$I1ffo fo Ifnd$fafpfDo4Po|PfofofffufufffffgHL9uHHHPHH9f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9tf;pLB AL9_f;pLB A L9Jf;pLB A L95f;pLB A L9 f;pLB A L9 f;pA HH9f;pAI0H9HHzH9H9AH9A3HGH%t$I1ffo fo Ifnd$fafpDoBoLBfffufufffffgHL9uHHHBHH9f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9tf;rL@ AL9_f;rL@ A L9Jf;rL@ A L95f;rL@ A L9 f;rL@ A L9 f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo 1ffo IfDoro4poLro|pfffufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9zAP f9P HVAH9`AP f9P HVAH9FAPf9PHVAH9,APf9PHV AH9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB;4BBIL9ufB;4HB IL9uHLHzf;2HH9uH,Hxf;0HH9uH HwHBIfof 1ffo8 Ioro4poLro|pfffufufffffg1HI9uHHL6HLLH9DLFfD9I9eDRLFfD9PAI9JDRLFfD9PAI9/DRLFfD9PAI9DPLFfD9RAI9DR LFfD9P AL9DR LFfD9P AL9DRLFfD9PAL9DRLF fD9PAL9DRLF fD9PA L9rDRLF fD9PA L9WDRLF fD9PA L9It=Mu I>H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9APHWHBt$I1ffoY fo1 Ifnd$fafpfDo4Po|PfofofffufufffffgHL9uHHHPHH9f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9tf;pLB AL9_f;pLB A L9Jf;pLB A L95f;pLB A L9 f;pLB A L9 f;pA HH9f;pAI0H9HHzH9H9AH9A3HGH%t$I1ffoP fo( Ifnd$fafpDoBoLBfffufufffffgHL9uHHHBHH9f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9tf;rL@ AL9_f;rL@ A L9Jf;rL@ A L95f;rL@ A L9 f;rL@ A L9 f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfo8 1ffo IfDoro4poLro|pfffufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9zAP f9P HVAH9`AP f9P HVAH9FAPf9PHVAH9,APf9PHV AH9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB;4BBIL9ufB;4HB IL9uHLHzf;2HH9uH,Hxf;0HH9uH HwHBIfo 1ffo Ioro4poLro|pfffufufffffg1HI9uHHL6HLLH9DLFfD9I9eDRLFfD9PAI9JDRLFfD9PAI9/DRLFfD9PAI9DPLFfD9RAI9DR LFfD9P AL9DR LFfD9P AL9DRLFfD9PAL9DRLF fD9PAL9DRLF fD9PA L9rDRLF fD9PA L9WDRLF fD9PA L9It=Mu I>H~&1DfD9HLLLH9ufIMuIu2H9H~HxH9H9AH9A`HWHRt$I1ffo fo Ifnd$fafpfDoPoLPfffufufffffgHL9uHHHPHH9"f;0LBL9f;pLBAL9f;pLBAL9f;pLBAL9f;pLBAL9f;p LBAL9f;p LBAL9f;pLBAL9|f;pLB AL9gf;pLB A L9Rf;pLB A L9=f;pLB A L9(f;pLB A L9f;pA HH9f;pAI0H9HHzH9H9AH9ACHGH5t$I1ffo fox Ifnd$fafpDo4Bo|BfofofffufufffffgHL9uHHHBHH9f;2L@L9f;rL@AL9f;rL@AL9f;rL@AL9f;rL@AL9f;r L@AL9f;r L@AL9f;rL@AL9lf;rL@ AL9Wf;rL@ A L9Bf;rL@ A L9-f;rL@ A L9f;rL@ A L9f;rA HH9f;rAIH9H9HH4?L 9L2L9AL9AHE H9@L9AD AHwHIfox 1ffoJ IfDopo4roLpo|rfffufufffffg1HL9uHHL6HLIH9Af9HVH9APf9PHVAH9APf9PHVAH9APf9PHVAH9APf9PHVAH9jAP f9P HVAH9PAP f9P HVAH96APf9PHVAH9APf9PHV AH9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHV A H9APf9PHVA H9Axf9xADfB;4BBIL9ufB;4HB IL9uHMuIu2H9M~J@H9J@H9@zIPHlt$L1ffo fo Hfnd$fafpfDoPoLPfffufufffffgHH9uLHHPHI9 f 8HzI9 f xHzAI9f xHzAI9f xHzAI9f xHzAI9f x HzAI9f x HzAI9f xHzAI9jf xHz AI9Sf xHz A I9HLZLRH~,1fA9fA8@HIM1LH9u[ff.@LLJHOHH>IH1fDHLfLH9uHHA H9HGHH1HHfDom8D}9DH H9uHHH4HHH9t*2f1HpH9}rfqHpH9wDI%H9FH~HA H9HB @H9@HGHH1HHff.@o u8D}9DH H9uHHH4HHH9V2f1HpH9@rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9hrfqHp H9PrfqHp H98rfqHp H9 rHfqH9BfAw14Bf4AHH9u14Bf4AHH9u@UHAWAVAUATSHH LBHLgL.HM1MMH1LIIHIHLIIMHHLI9@MHHLHHIHH9@ILLl$HIIHMHHL9\$Ll$HH\$Ld$LHHHLHII9W H*^,fA$HBMI9dWH*^,fA$HBMI99WH*^,fA$HBMI9WH*^,fA$HBMI9WH*^,fA$HBMI9WHH*^,fA$MI9W*^,fA$wHe[A\A]A^A_]M~HC H9LIEH>L( o4 1HHf.o<E8D}3}9}9}3^^u8}9^^]8}+x}9DH H9mLHHHII9tsW *^,fA$HPL9}JSW*^,fAT$HPL9}'SW*^,fAT$HPL9wHe[A\A]A^A_]fI6L9vM^HC I9ID$ H9}IEHoL(~ o 1HHff.o<E8D}3}9}9}3^^u8}9^^]8}+x}9DH H9mLHHHII9W L *^,fA$HPI9SW*^,fAT$HPI9{SW*^,fAT$HPI9TSW*^,fAT$HPI9-SW*^,fAT$HPI9S W*^,fAT$ HPI9S W*^,fAT$ HPI9SW*^,fAT$HPI9SW*^,fAT$HP I9jSW*^,fAT$HP I9CSW*^,fAT$HP I9SW*^,fAT$HP I9SW*^,fAT$HP I9SWH*^,fAT$I9CW*^,fAD$wf 1fDWHH*^,fA$MI9uHe[A\A]A^A_] 1SW*^,fATHI9u 1SW*^,fATHL9ubLLJHHWH>It5H 1f.0HLf2LH9uf.IuH9HHH H9HJ @H9@HOHH1HHff.@o u8D }9D H H9uHHH4 HHH9tB0f2HqH9~3pfrHqH9~"pfrHqH9~pfrHqH9wpfrHqH9~p fr HqH9~p fr HqH9~pfrHqH9~pfrHq H9~pfrHq H9~pfrHq H9~pfrHq H9ppfrHq H9[pHfrH9F@fBwH4HH H9r_HOHvUH1HHfDom8D }9D H H9u1fD4Hf4JHH9u14Hf4JHH9uf.LLJHOHH>IH1fDHLfLH9uHHA H9HGHH1HHoe8D}9DH H9uHHH4HHH9t(2f1HpH9}rfqHpH9wI%H9EH~HA H9HB @H9@HGHH1HHff.om8D}9DH H9uHHH4HHH9T2f1HpH9?rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9prfqHp H9YrfqHp H9BrfqHp H9+rHfqH9BfAw1ff.@4Bf4AHH9u14Bf4AHH9ufDLLJHGHH6It5H#1f.f:HLLH9ufIuH9HH rH9H 0@H9@HNHHo 1o Hff.@o,JotJ U8DJM8LJ0uug}9DH H9uHHHJHH9tH)H rf:HHH9wwH~H pH<0H9AH9AHNHIo 1o If.oIH1fDHLfLH9uHHA H9HGHH1vHHoe8D}9DH H9uHHH4HHH9t(2f1HpH9}rfqHpH9wI%H9EH~HA H9HB @H9@HGHH1vHHff.om8D}9DH H9uHHH4HHH9T2f1HpH9?rfqHpH9(rfqHpH9rfqHpH9rfqHpH9r fq HpH9r fq HpH9rfqHpH9rfqHp H9rfqHp H9prfqHp H9YrfqHp H9BrfqHp H9+rHfqH9BfAw1ff.@4Bf4AHH9u14Bf4AHH9ufDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9fA9HxH9 yfAyHxH9 yfAyHxH9 yfAyHxH9 yfAyHxH9 y fAy HxH9 y fAy HxH9 yfAyHxH9x yfAyHx H9 yfAyHx H9 yfAyHx H9 yfAyHx H9 yfAyHx H9 yHfAyH9! fQfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 fAfAHPH9QfAPfAQHPH9QfAPfAQHPH9QfAPfAQHPH9QfAPfAQHPH9Q fAP fAQ HPH9Q fAP fAQ HPH9pQfAPfAQHPH9QfAPfAQHP H9gQfAPfAQHP H9GQfAPfAQHP H9'QfAPfAQHP H9QfAPfAQHP H9RQHfAPfAQH9<AfA@fAAwAxfAyHH9u#BQfCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBfH9IBfQH9qIBfQH9`IBfQH9OIBfQH9>IBfQ H9-IBfQ H9IBfQH9 IB fQH9IB fQH9IB fQH9IB fQH9IB fQH9IfQL9fQHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfAH9#HGfAPH9HGfAPH9HGfAPH9HGfAPH9HGfAP H9HGfAP H9HGfAPH9HG fAPH9HG fAPH9HG fAPH9oHG fAPH9]HG fAPH9KHfAPH99fAPH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwAffAHPH9APfQfAQHPH9QfAPfAQHPH9jQfAPfAQHPH9OQfAPfAQHPH94AP fQ fAQ HPH9Q fAP fAQ HPH9QfAPfAQHPH9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9wQfAPfAQHP H9\QHfAPfAQH9AA@fAfAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwfAfAHPH9QfAPfAQHPH9QfAPfAQHPH9iQfAPfAQHPH9NQfAPfAQHPH93Q fAP fAQ HPH9Q fAP fAQ HPH9QfAPfAQHPH9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9QfAPfAQHP H9vQfAPfAQHP H9[QHfAPfAQH9@AfA@fAA1AfA@fAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9jUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9 f+9fA9HxH9' f+yfAyHxH9( f+yfAyHxH9 f+yfAyHxH9 f+yfAyHxH9 f+y fAy HxH9 f+y fAy HxH9 f+yfAyHxH9 f+yfAyHx H9B f+yfAyHx H94 f+yfAyHx H9 f+yfAyHx H9 f+yfAyHx H9 Hf+yfAyH9x f+QfAQwfIYM9I9HhI@ Iy I9I9 HA I9H9@ n HFH` H1HHff.@zo$o,]8DU8Lx}9DH H9uHHHIHIH9p Af+fAHPH9S APf+QfAQHPH93 APf+QfAQHPH9. APf+QfAQHPH9' APf+QfAQHPH9 AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9APf+QfAQHP H9APf+QfAQHP H9APf+QfAQHP H9~APf+QfAQHP H9^APf+QfAQHP H9APHf+QfAQH9A@f+AfAAwAx)fAyHH9ufB+QfCQIL9uHHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9wf+fIBH9mf+AfAIBH9Vf+AfAIBH9?f+AfAIBH9(f+AfAIBH9f+A fA IBH9f+A fA IBH9f+AfAIBH9f+AfAIB H9f+AfAIB H9f+AfAIB H9f+AfAIB H9pf+AfAIB H9YIf+AfAL9Bf+QfQH/HFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA)H9HGfA)PH9HGfA)PH9HGfA)PH9HGfA)PH9tHGfA)P H9bHGfA)P H9PHGfA)PH9>HG fA)PH9,HG fA)PH9HG fA)PH9HG fA)PH9HG fA)PH9HfA)PH9fA)PHHFHH1HHzo<o$E8D]8Lx}9DH H9uHHHIHIH9cwAf+fAHPH99APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9|APf+QfAQHP H9aAPf+QfAQHP H9FAPf+QfAQHP H9+APf+QfAQHP H9APf+QfAQHP H9APHf+QfAQH9A@f+AfAAHHFHnH1HHzo,o4U8DM8Lx}9DH H9uHHHIHIH9vwAf+fAHPH98APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9APf+QfAQHPH9AP f+Q fAQ HPH9AP f+Q fAQ HPH9APf+QfAQHPH9{APf+QfAQHP H9`APf+QfAQHP H9EAPf+QfAQHP H9*APf+QfAQHP H9APf+QfAQHP H9APHf+QfAQH9A@f+AfAA1A@f+AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwff.LLOHOLLZHzH6M9jUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9!fA9HxH9 y!fAyHxH9 y!fAyHxH9 y!fAyHxH9 y!fAyHxH9 y !fAy HxH9 y !fAy HxH9 y!fAyHxH9x y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 y!fAyHx H9 yH!fAyH9! f#QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af#fAHPH9APf#QfAQHPH9APf#QfAQHPH9APf#QfAQHPH9APf#QfAQHPH9AP f#Q fAQ HPH9AP f#Q fAQ HPH9pAPf#QfAQHPH9APf#QfAQHP H9gAPf#QfAQHP H9GAPf#QfAQHP H9'APf#QfAQHP H9APf#QfAQHP H9RAPHf#QfAQH9<A@f#AfAAwAx!fAyHH9u#BQ!fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf!H9IBf!QH9qIBf!QH9`IBf!QH9OIBf!QH9>IBf!Q H9-IBf!Q H9IBf!QH9 IB f!QH9IB f!QH9IB f!QH9IB f!QH9IB f!QH9If!QL9f!QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA!H9#HGfA!PH9HGfA!PH9HGfA!PH9HGfA!PH9HGfA!P H9HGfA!P H9HGfA!PH9HG fA!PH9HG fA!PH9HG fA!PH9oHG fA!PH9]HG fA!PH9KHfA!PH99fA!PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA#fAHPH9QfA#PfAQHPH9APf#QfAQHPH9jAPf#QfAQHPH9OAPf#QfAQHPH94Q fA#P fAQ HPH9AP f#Q fAQ HPH9APf#QfAQHPH9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9wAPf#QfAQHP H9\APHf#QfAQH9AAfA#@fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf#fAHPH9APf#QfAQHPH9APf#QfAQHPH9iAPf#QfAQHPH9NAPf#QfAQHPH93AP f#Q fAQ HPH9AP f#Q fAQ HPH9APf#QfAQHPH9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9APf#QfAQHP H9vAPf#QfAQHP H9[APHf#QfAQH9@A@f#AfAA1A@f#AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 9 fA9HxH9 y fAyHxH9 y fAyHxH9 y fAyHxH9 y fAyHxH9 y fAy HxH9 y fAy HxH9 y fAyHxH9x y fAyHx H9 y fAyHx H9 y fAyHx H9 y fAyHx H9 y fAyHx H9 yH fAyH9! f QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af fAHPH9APf QfAQHPH9APf QfAQHPH9APf QfAQHPH9APf QfAQHPH9AP f Q fAQ HPH9AP f Q fAQ HPH9pAPf QfAQHPH9APf QfAQHP H9gAPf QfAQHP H9GAPf QfAQHP H9'APf QfAQHP H9APf QfAQHP H9RAPHf QfAQH9<A@f AfAAwAx fAyHH9u#BQ fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf H9IBf QH9qIBf QH9`IBf QH9OIBf QH9>IBf Q H9-IBf Q H9IBf QH9 IB f QH9IB f QH9IB f QH9IB f QH9IB f QH9If QL9f QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA H9#HGfA PH9HGfA PH9HGfA PH9HGfA PH9HGfA P H9HGfA P H9HGfA PH9HG fA PH9HG fA PH9HG fA PH9oHG fA PH9]HG fA PH9KHfA PH99fA PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA fAHPH9QfA PfAQHPH9APf QfAQHPH9jAPf QfAQHPH9OAPf QfAQHPH94Q fA P fAQ HPH9AP f Q fAQ HPH9APf QfAQHPH9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9wAPf QfAQHP H9\APHf QfAQH9AAfA @fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf fAHPH9APf QfAQHPH9APf QfAQHPH9iAPf QfAQHPH9NAPf QfAQHPH93AP f Q fAQ HPH9AP f Q fAQ HPH9APf QfAQHPH9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9APf QfAQHP H9vAPf QfAQHP H9[APHf QfAQH9@A@f AfAA1A@f AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDLLOHOLLZHzH6M9ZUHHItHfT$}yL$1HHff.om8Dx}9DH H9uHHH<HIH9; 91fA9HxH9 y1fAyHxH9 y1fAyHxH9 y1fAyHxH9 y1fAyHxH9 y 1fAy HxH9 y 1fAy HxH9 y1fAyHxH9x y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 y1fAyHx H9 yH1fAyH9! f3QfAQwfIiM9XI9PHxI@ Iy I9I9 HA I9H9@  HFH H1HHff.@zo$o,]8LU8Dx}9DH H9uHHHIHIH9 Af3fAHPH9APf3QfAQHPH9APf3QfAQHPH9APf3QfAQHPH9APf3QfAQHPH9AP f3Q fAQ HPH9AP f3Q fAQ HPH9pAPf3QfAQHPH9APf3QfAQHP H9gAPf3QfAQHP H9GAPf3QfAQHP H9'APf3QfAQHP H9APf3QfAQHP H9RAPHf3QfAQH9<A@f3AfAAwAx1fAyHH9u#BQ1fCQIL9u HHFHvdHfT$}yL$HHHHff.o0M8@H @}9@H9uIIJ QL9jwIBf1H9IBf1QH9qIBf1QH9`IBf1QH9OIBf1QH9>IBf1Q H9-IBf1Q H9IBf1QH9 IB f1QH9IB f1QH9IB f1QH9IB f1QH9IB f1QH9If1QL9f1QHHFHvXHfT$}yL$LHHLo8E8@H @}9@H9uHHMxH9wHGfA1H9#HGfA1PH9HGfA1PH9HGfA1PH9HGfA1PH9HGfA1P H9HGfA1P H9HGfA1PH9HG fA1PH9HG fA1PH9HG fA1PH9oHG fA1PH9]HG fA1PH9KHfA1PH99fA1PH)HFHH1HHo<zo$E8L]8Dx}9DH H9uHHHIHIH9cwfA3fAHPH9QfA3PfAQHPH9APf3QfAQHPH9jAPf3QfAQHPH9OAPf3QfAQHPH94Q fA3P fAQ HPH9AP f3Q fAQ HPH9APf3QfAQHPH9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9wAPf3QfAQHP H9\APHf3QfAQH9AAfA3@fAAH(HFHnH1HHo,zo4U8LM8Dx}9DH H9uHHHIHIH9vwAf3fAHPH9APf3QfAQHPH9APf3QfAQHPH9iAPf3QfAQHPH9NAPf3QfAQHPH93AP f3Q fAQ HPH9AP f3Q fAQ HPH9APf3QfAQHPH9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9APf3QfAQHP H9vAPf3QfAQHP H9[APHf3QfAQH9@A@f3AfAA1A@f3AfAAHH9uwwwwwwwwwwwwwwwwwwwww1wwwwwwwwwwwwww1wwwwwwwwwwwwwwDUHSHLLOLHZHLZH6M9ItKMu IH~&1DAHMLfAIH9uH]ff.IMuHuM9 H~I@ I9IA I9~HFHpHHco9 1HH\$~\$Hff.fzo4M8L}3}9}3}+x}9DH H9uHHHIIH9xAfAHPH9APfAQHPH9APfAQHPH9APfAQHPH9APfAQHPH9AP fAQ HPH9AP fAQ HPH9APfAQHPH9APfAQHP H9APfAQHP H97APfAQHP H9APfAQHP H9$APfAQHP H9APHfAQH9A@fAAwfDMFL9=AH~1HLH9ufARHAI9?H/IA H9HG I9HFHHT$oW7 1H}X\$HfDo,U8L}3}9}3eGeG}+x}9DH H9uHHH HIH9HHfAH9o OHHfAYH9} OHHfAYH9[ OHHfAYH9Q OHHfAYH9o O HHfAY H9e O HHfAY H9C OHHfAYH99 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHH fAYH9 OHfAYH9 OfAQwHM9 I9c HI@ II I9I9 HG I9H9 Ȅ HFH Ho4 1HHzo<E8Lo<E8\}3}9}3}9}3}3}GuG}+x}9DH H9uHHHIHIH9 AfAHPH9t APOfAQHPH9O APOfAQHPH9Q APOfAQHPH9T APOfAQHPH9/ AP O fAQ HPH9 AP O fAQ HPH9 APOfAQHPH9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOfAQHP H9 APOHfAQH9 A@OfAAw8fCXfCYIL9uB WfCQIL9uHHFHHT$}X\$HHo&2 HHff.@o0M8HH }3}9}3eGeG}+@}9@H9uIIJItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1o o IfoItEMu IFH~.1ff.@DfD9HLLLH9uÐIMuIu1H9H~H zH9H 8AH9A@HOH2ft$I}yd$1o om IfoItEMu IVH~.1ff.@DfD9HLLLH9uÐI6MuIu1H9H~H zH9H 8AH9A`HOHRft$I1}yl$oQ Io  Do4Jo|J M8DJE8\J0uug}9DH L9uHHHJHH9t%H)H zff.f;2HHH9wwI2H9HHyH9H8AH9A/HWH!ft$I1}yl$o8 Io  ff.o4Qo|Q M8DQE8\Q0uug}9DH L9uIIJALL9L)H zf;2HHH9wIH9H9HH4?L 8L1L9AL9AHE H9@L9AD AOHwHAIo 1o  IfDo4roItEMu IVH~.1ff.@DfD9HLLLH9uÐI6MuIu1H9H~H zH9H 8AH9A`HOHRft$I1}yl$o Io u Do4Jo|J M8DJE8\J0uug}9DH L9uHHHJHH9t%H)H zff.f;2HHH9wwI2H9HHyH9H8AH9A/HWH!ft$I1}yl$o Io \ ff.o4Qo|Q M8DQE8\Q0uug}9DH L9uIIJALL9L)H zf;2HHH9wIH9H9HH4?L 8L1L9AL9AHE H9@L9AD AOHwHAIox 1o * IfDo4roItEMu IVH~.1ff.@DfD9HLLLH9uÐI6MuIu1H9H~H zH9H 8AH9A`HOHRft$I1}yl$o1 Io Do4Jo|J M8DJE8\J0uug}9DH L9uHHHJHH9t%H)H zff.f;2HHH9wwI2H9HHyH9H8AH9A/HWH!ft$I1}yl$o Io ff.o4Qo|Q M8DQE8\Q0uug}9DH L9uIIJALL9L)H zf;2HHH9wIH9H9HH4?L 8L1L9AL9AHE H9@L9AD AOHwHAIo 1o IfDo4roItEMu IVH~.1ff.@DfD9HLLLH9uÐI6MuIu1H9H~H zH9H 8AH9A`HOHRft$I1}yl$o Io U Do4Jo|J M8DJE8\J0uug}9DH L9uHHHJHH9t%H)H zff.f;2HHH9wwI2H9HHyH9H8AH9A/HWH!ft$I1}yl$o Io < ff.o4Qo|Q M8DQE8\Q0uug}9DH L9uIIJALL9L)H zf;2HHH9wIH9H9HH4?L 8L1L9AL9AHE H9@L9AD AOHwHAIoX 1o IfDo4roHLZLRH~41ff.fA9fA8@HIM1LH9u[HLGL LZHLRH6L9t61H~'f9fCHLLfAMH9uMuM9uH~1@DfD9ABHLH9uf@HLGL LZHLRH6L9t61H~'f9fFHLLfAMH9uMuM9uH~1@DfD9AGHLH9uf@ATUSLLLGH*HHZLZM~S1AfAftGAft=DEDftҨtfufHIILI9u[]A\fffDAWAVAUATUSHL6L/HoLgLHzLzM~X1%@AE1ffA$HMHMI9t/MfuH|$L$1L$H|$fA$fDH[]A\A]A^A_fHOHz1HH~f.HHH9uff.fLLJHHWH>It%H~1fD0HL2LH9u@IuH9tH~1fD44HH9u1H~̐44HH9uAUATUSH LHRLWHH{HcL[H1HIHIIHHILHLHML9AHHHLHHILH9AIILLE1ILL$I4IH,RfnfnILfnfnLfbfbflfoffs ffpfpfbf~fofpUf~ fofjfpf~ Pf~(LM9uHHHHIHHIH9t9AIAHFIH9~!AHIAIH9~ AA[]A\A]H{M9H~IBI9IAI9HCHH11HAoHfoffs ffpfpfbA HH9uHHHILH9LA ɉHJH97AIHɉHH9 AQ҉P1fDAHIAIH9u[]A\A]HIBI9HCHH11Hf.AoHfoffs ffpfpfbA HH9uHHHILH9\A ɉHJH9GAIHɉHH9+1AAHH9u1AAHH9uff.AUATUSH LHRLWHHHL[H1HIHIIHHILHLHML9AHHHLHHILH9ArIhILLE1f(L II4ILL$H,Rfnfnf(f(fn4fn<ILLfbfbflf^fpf^ffflfpUf~f~ fofjfpf~ Pf~(LM9uHHHHIHHIH9tjfn A* If(^,AHFIH9~;ff(HA* I^,AIH9~fA* ^,A[]A\A]ÐHKM9SH~IAI9IBI9$HCHHf( 11HAo4f(f(HAf^fpf^ffflAHH9uHHHILH9?fC A* f(^,ΉHJH9ff(HA*I^,ΉHH9fA*I^,ЉP 1fDff(HA*I^,AIH9u[]A\A]HIAI9HCHHf( 11HAo<f(f(HAf^fpf^ffflAHH9uHHHILH9f A* f(^,ωHJH9ff(HA*I^,ωHH9 1fDff(A*^,AHH9uh p 1ff(A*^,AHH9u6ff.LLJHHWH>It%H~1fD0HL2LH9u@IuH9H~HHH9HJ@H9@HOHI11IDoH HI9uHHH HHH9w HNH9fHHJH9S@BHCHHH9rOHOHvEI11If.o H HI9uk144HH9u1ɋ44HH9uff.LLJHOHH>It%H~1fDHL؉LH9ufIuH9H~HAH9HB@H9@'HGHI1f1IofoHfHI9uHHHHHH9q ىHNH9^JHىHH9IRډPH7HAH9HGHI1f1IofoHfHI9uHHHHHH9 ىHNH9JHىHH9`1D4މ4HH9u14މ4HH9uf.LLJHGHH6It%H~1fD:HLLH9uÐIuH9PH~H H9H 0@H9@`HNHRIHfHIfo fo_ I@ooIHH@fvfvfffofafifofifaoafaoIfvffvfffofafifofifafaffgGL9tHHHHH9DHyEH9zHy@H9DZHyE@H9DR HyE@H9DJHyE@H9DBHyE@H9gzHy@H9QDZHyE@H99DR Hy E@H9!DJ$Hy E@ H9 DB(Hy E@ H9z,Hy @ H9DZ0Hy E@ H9DR4E@ HH9DJ8E@HH H9H 0@H9@'HNHIHfHIfoS fo IooIHH@fvfvfffofafifofifaoafaoIfvffvfffofafifofifafaffgGL9tHHHHH9DHyEH9DRHyE@H91@DEHH9u1D EHH9uff.LLJHOHH>It%H~1fDHLЉLH9ufIuH9H~HAH9HB@H9@#HGHI1fv1IoHfHI9uHHHHHH9u щHNH9bJHщHH9MR҉PH;HAH9HGHI1fv1I@oHfHI9uHHHHHH9 щHNH9JHщHH9`1f4։4HH9u14։4HH9uf.LLGHOLLZHzH6M9*ItIt=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@/HWH!DD$IHHfn\$Ifo IfpfoΙ fDooJHH@fvfvfffofafifofifaobfaoJfvffvfffofafifofifafaffgFL9tHHHHH9D9HrH9D9@HrAH9D9@HrAH9D9@ HrAH9~D9@HrAH9iD9@HrAH9TD9@HrAH9?D9@HrAH9*D9@ Hr AH9D9@$Hr A H9D9@(Hr A H9D9@,Hr A H9D9@0Hr A H9D9@4A HH9D9@8AIhDH9H|HH9H9@H9@HGHDL$IHHfn\$Ifoŗ Ifpfou DooHHH@fvfvfffofafifofifao`faoHfvffvfffofafifofifafaffgFL9tHHHHH9xD9 HpH9eD9JHpAH9PD9JHpAH9;D9J HpAH9&D9JHpAH9D9JHpAH9D9JHpAH9D9JHpAH9D9J Hp AH9D9J$Hp A H9D9J(Hp A H9D9J,Hp A H9~D9J0Hp A H9iD9J4A HH9TD9J8AIH9H9QH&H4L 9L2L9AL9AHE H9@L9AD AdHwHVIfod fo 1IfDo<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9AP9PHVAH9jAP9PHVAH9RAP9PHVAH9:AP 9P HV AH9"AP$9P$HV A H9 AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF9 BIL9uF9B IL9uHlF9 BII9uHO@F9BII9uH/HwHIfo foc 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9I9.DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9fDR$LF D9P$A L9MDR(LF D9P(A L94DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[IfoQ fo 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9pDRLFD9PAL9WDRLFD9PAL9>DRLFD9PAL9%DR LF D9P AL9 DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@/HWH!DD$IHHfn\$Ifo IfpfoΌ fDooJHH@fvfvfffofafifofifaobfaoJfvffvfffofafifofifafaffgFL9tHHHHH9D9HrH9D9@HrAH9D9@HrAH9D9@ HrAH9~D9@HrAH9iD9@HrAH9TD9@HrAH9?D9@HrAH9*D9@ Hr AH9D9@$Hr A H9D9@(Hr A H9D9@,Hr A H9D9@0Hr A H9D9@4A HH9D9@8AIhDH9H|HH9H9@H9@HGHDL$IHHfn\$IfoŊ Ifpfou DooHHH@fvfvfffofafifofifao`faoHfvffvfffofafifofifafaffgFL9tHHHHH9xD9 HpH9eD9JHpAH9PD9JHpAH9;D9J HpAH9&D9JHpAH9D9JHpAH9D9JHpAH9D9JHpAH9D9J Hp AH9D9J$Hp A H9D9J(Hp A H9D9J,Hp A H9~D9J0Hp A H9iD9J4A HH9TD9J8AIH9H9QH&H4L 9L2L9AL9AHE H9@L9AD AdHwHVIfod fo 1IfDo<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9AP9PHVAH9jAP9PHVAH9RAP9PHVAH9:AP 9P HV AH9"AP$9P$HV A H9 AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF9 BIL9uF9B IL9uHlF9 BII9uHO@F9BII9uH/HwHIfo foc 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9I9.DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9fDR$LF D9P$A L9MDR(LF D9P(A L94DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[IfoQ fo 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9pDRLFD9PAL9WDRLFD9PAL9>DRLFD9PAL9%DR LF D9P AL9 DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@?HWH1DD$IHHfn\$Ifo Ifpfo fDooJHH@fffffffofafifofifaobfaoJffffffffofafifofifafaffgFL9tHHHHH9D;HrH9D;@HrAH9D;@HrAH9D;@ HrAH9~D;@HrAH9iD;@HrAH9TD;@HrAH9?D;@HrAH9*D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9D;@8AIhDH9 H|HH9H9@H9@HGHDL$IHHfn\$Ifo} Ifpfou} Do8fofoHH@ffoxffoxffoffafifofafifofafoffoxfffffoffafifofafifaffgFL9dHHHHH9hD; HpH9UD;JHpAH9@D;JHpAH9+D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9D;J$Hp A H9D;J(Hp A H9D;J,Hp A H9nD;J0Hp A H9YD;J4A HH9DD;J8AIH9H9QHH4L 9L2L9AL9AHE H9@L9AD AdHwHVIfoT{ fo { 1IfDo<ooLffo|ffo| ffoffafifofafiod0faoL fffo|0ffffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9rAP9PHVAH9ZAP9PHVAH9BAP9PHVAH9*AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF; BIL9uF;B IL9uH\F; BII9uH?@F;BII9uHHwHIfox foSx 1Io4o|ooLffffot o|0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9I9DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9oDR LF D9P AL9VDR$LF D9P$A L9=DR(LF D9P(A L9$DR,LF D9P,A L9 DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[IfoAv fou 1Io4o|ooLffffot o|0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9yDRLFD9PAL9`DRLFD9PAL9GDRLFD9PAL9.DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@?HWH1DD$IHHfn\$Ifos Ifpfor fDo:fofoHH@ffozffozffoffafifofafifofafoffozfffffoffafifofafifaffgFL9dHHHHH9D;HrH9D;@HrAH9D;@HrAH9D;@ HrAH9nD;@HrAH9YD;@HrAH9DD;@HrAH9/D;@HrAH9D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9D;@8AIXDH9HlHH9H9@H9@HGHDL$IHHfn\$Ifop IfpfoUp DooHHH@fffffffofafifofifao`faoHffffffffofafifofifafaffgFL9tHHHHH9hD; HpH9UD;JHpAH9@D;JHpAH9+D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9D;J$Hp A H9D;J(Hp A H9D;J,Hp A H9nD;J0Hp A H9YD;J4A HH9DD;J8AIH9H9QHH4L 9L2L9AL9AHE H9@L9AD AdHwHVIfoDn fom 1IfDo<ooLffo|ffo| ffoffafifofafiod0faoL fffo|0ffffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9rAP9PHVAH9ZAP9PHVAH9BAP9PHVAH9*AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF; BIL9uF;B IL9uH\F; BII9uH?@F;BII9uHHwHIfok foCk 1Io<otooLffffo| ot0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9I9DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9oDR LF D9P AL9VDR$LF D9P$A L9=DR(LF D9P(A L9$DR,LF D9P,A L9 DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[Ifo1i foh 1Io<otooLffffo| ot0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9yDRLFD9PAL9`DRLFD9PAL9GDRLFD9PAL9.DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@?HWH1DD$IHHfn\$Ifoe Ifpfoe fDo:fofoHH@ffozffozffoffafifofafifofafoffozfffffoffafifofafifaffgFL9dHHHHH9D;HrH9D;@HrAH9D;@HrAH9D;@ HrAH9nD;@HrAH9YD;@HrAH9DD;@HrAH9/D;@HrAH9D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9D;@8AIXDH9HlHH9H9@H9@HGHDL$IHHfn\$Ifoc IfpfoEc DooHHH@fffffffofafifofifao`faoHffffffffofafifofifafaffgFL9tHHHHH9hD; HpH9UD;JHpAH9@D;JHpAH9+D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9D;J$Hp A H9D;J(Hp A H9D;J,Hp A H9nD;J0Hp A H9YD;J4A HH9DD;J8AIH9H9QHH4L 9L2L9AL9AHE H9@L9AD AdHwHVIfo4a fo` 1IfDo<ooLffo|ffo| ffoffafifofafiod0faoL fffo|0ffffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9rAP9PHVAH9ZAP9PHVAH9BAP9PHVAH9*AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF; BIL9uF;B IL9uH\F; BII9uH?@F;BII9uHHwHIfo{^ fo3^ 1Io<otooLffffo| ot0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9I9DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9oDR LF D9P AL9VDR$LF D9P$A L9=DR(LF D9P(A L9$DR,LF D9P,A L9 DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[Ifo!\ fo[ 1Io<otooLffffo| ot0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9yDRLFD9PAL9`DRLFD9PAL9GDRLFD9PAL9.DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@?HWH1DD$IHHfn\$IfoX IfpfoX fDooJHH@fffffffofafifofifaobfaoJffffffffofafifofifafaffgFL9tHHHHH9D;HrH9D;@HrAH9D;@HrAH9D;@ HrAH9~D;@HrAH9iD;@HrAH9TD;@HrAH9?D;@HrAH9*D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9D;@8AIhDH9 H|HH9H9@H9@HGHDL$IHHfn\$IfoV IfpfoEV Do8fofoHH@ffoxffoxffoffafifofafifofafoffoxfffffoffafifofafifaffgFL9dHHHHH9hD; HpH9UD;JHpAH9@D;JHpAH9+D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9D;J$Hp A H9D;J(Hp A H9D;J,Hp A H9nD;J0Hp A H9YD;J4A HH9DD;J8AIH9H9QHH4L 9L2L9AL9AHE H9@L9AD AdHwHVIfo$T foS 1IfDo<ooLffo|ffo| ffoffafifofafiod0faoL fffo|0ffffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9rAP9PHVAH9ZAP9PHVAH9BAP9PHVAH9*AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF; BIL9uF;B IL9uH\F; BII9uH?@F;BII9uHHwHIfokQ fo#Q 1Io4o|ooLffffot o|0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9I9DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9oDR LF D9P AL9VDR$LF D9P$A L9=DR(LF D9P(A L9$DR,LF D9P,A L9 DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[IfoO foN 1Io4o|ooLffffot o|0fffofafifofifaod0faoL ffffffffofafifofifafaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9yDRLFD9PAL9`DRLFD9PAL9GDRLFD9PAL9.DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐSL LZHZHOLGHLItLMu IM~.1fD9@HLL!AIL9u[I6MuHuI9ZM~хJ@I9KH9IBHLfoK LHfLljD$fn\$HfpfopK ooHHH@fvfvfvfvfffffofafifofifao`faoHfvffvfvfvfffffofafifofifafaffgAH9TLHHII9X[HaL9MJ@I9KH9xIBHjLfoJ LHfLljD$fn\$HfpfoJ ooHHH@fvfvfvfvfffffofafifofifao`faoHfvffvfvfvfffffofafifofifafaffgBH9TLHHII9K:!AHHI92J!AHHHI9Z!AHHHI9DZ E!AHHHI9DJE!AHHHI9z!AHHHI9J!AHHHI9Z!AHHHI9qDZ E!AHHH I9TDJ$E!AH HH I97z(!AH HH I9J,!AH HH I9Z0!AH HH I9DZ4EH!AH I9DR8E!Ap[ÐHyI9XL9MJK<H4I9@H9AHD I9H9@ @ IBH LfoG 1ffo8G H@oo olot0fvfvfvfvfvfvfvfvfoLffvfvffoffafifofafiol faoL fvffvfvfvfol0ffvfvffoffafifofafifaffgAHH9LHH4IHHI9!9@ƅ@!A0HpI9DJDYE@E@!ApHpI9Zy@ƅ@!ApHpI9DJ DY E@E@!ApHpI9Zy@ƅ@!ApHpI9cDJDYE@E@!ApHpI9:Zy@ƅ@!ApHpI9DJDYE@E@!ApHpI9Z y @ƅ@!ApHp I9DJ$DY$E@E@!Ap Hp I9Z(y(@ƅ@!Ap Hp I9yDJ,DY,E@E@!Ap Hp I9Pr0y0@ƅ@!Ap Hp I9+DZ4Y4E@ƅ@H!Ap I9DJ8DQ8EE!A@[fFE!CIM9uF E!CIM9uMfDB!BIM9u[MsFE!BIM9u[MBIBHLfosC 1ffo%C Hoo olot0fvfvfvfvfvfvfvfvfoLffvfvffoffafifofafiol faoL fvffvfvfvfol0ffvfvffoffafifofafifaffgAHH9LHH4IHHL99@ƅ@!A0HpL9DJDYE@E@!ApHpL9Zy@ƅ@!ApHpL9DJ DY E@E@!ApHpL9yYz@ƅ@!ApHpI9TDJDYE@E@!ApHpL9+Zy@ƅ@!ApHpI9DJDYE@E@!ApHpI9Z y @ƅ@!ApHp I9DJ$DY$E@E@!Ap Hp I9Z(y(@ƅ@!Ap Hp I9jDJ,DY,E@E@!Ap Hp I9Ar0y0@ƅ@!Ap Hp I9DZ4Y4E@ƅ@H!Ap I9DI8DR8EE!A@[MIBH0Lfo@ 1ffo? Hoo olot0fvfvfvfvfvfvfvfvfoLffvfvffoffafifofafiol faoL fvffvfvfvfol0ffvfvffoffafifofafifaffgAHH9LHH4IHHL99@ƅ@!A0HpI9~DJDYE@E@!ApHpI9UZy@ƅ@!ApHpI90DJ DY E@E@!ApHpI9Zy@ƅ@!ApHpI9DJDYE@E@!ApHpI9[14<@ƅ@!A4HI9u[11rff.LLRLZHOHWHLIt=Mu IM~"18 :HLLLL9ufDIMuIu:H9M~JH9J @H9@rIQHd|$fn\$MHIfo< Hffpfo< I@ooJHH@fffvfvfffofafifofifaobfaoJffffvfvfffofafifofifafaffgFL9dLHHHI9 0HrI9 pHrAI9 pHrAI9~ p HrAI9h pHrAI9R pHrAI9< pHrAI9& pHrAI9 p Hr AI9 p$Hr A I9 p(Hr A I9 p,Hr A I9 p0Hr A I9 p4A HI9 x8AIP8H9=McJH9J @H9@IAH|$fn\$MHIfo: Hffpfo.: IooHHH@fffvfvfffofafifofifao`faoHffffvfvfffofafifofifafaffgFL9dLHHHI9N 2HpI9: rHpAI9$ rHpAI9 r HpAI9 rHpAI9 rHpAI9 rHpAI9 rHpAI9 r Hp AI9 r$Hp A I9t r(Hp A I9^ r,Hp A I9H r0Hp A I92 r4A HI9 z8AIH9H9cMJ4N H<2H9@L9AHD H9@L9AD @nIqH`Lfo7 1ffo7 Hf.o<ooLot0fo|fvfo| fvffoffafifofafiod0faoL ffffvfvfffofafifofifafaffg1HH9MLHH<HHHI9 HVI9P WHVAI9zP WHVAI9cP W HVAI9LP WHVAI95P WHVAI9P WHVAI9P WHVAI9P W HV AI9P$ W$HV A I9P( W(HV A I9P, W,HV A I9P0 W0HV A I9}P4 W4HVA I9f@8 G8AfB BIM9uÉB 4BIM9uM&DB BIM9uMf.B BIM9uMIqHLfo)5 1ffo4 Ho<ooLot fo|fvfo|0fvffoffafifofafiod0faoL ffffvfvfffofafifofifafaffg1HH9MLHH<HHHL9: 8H~L9z xH~AL9x zH~AL9x z H~AL9z xH~AL9lx zH~AI9Ux zH~AI9>x zH~AI9'x z H~ AI9x$ z$H~ A I9x( z(H~ A I9x, z,H~ A I9x0 z0H~ A I9x4 z4A HI9R8 P8AMIqHQLfo2 1ffo2 Ho4ooLo| fotfvfot0fvffoffafifofafiod0faoL ffffvfvfffofafifofifafaffg1HH9MLHH<HHHL9o8 :H~I9vx zH~AI9_x zH~AI9Hx z H~AI91x zH~AI9x zH~AI9x zH~AI9x zH~AI9x z H~ AI9x$ z$H~ A I9x( z(H~ A I9x, z,H~ A I9yx0 z0H~ A I9bx4 z4A HI9K@8 B8A1< <1HI9u11@ÐSLLGHOH>HLZLRH~,1AA0@HIM1LH9u[ff.@LLJHOHH>IH1fDHLLH9uHHA H9HGHI11If.om8DH}@}9DH I9uHHH4HHH9t&21HpH9}rqHpH9wI%H9DH~HA H9HB @H9@HGHI11Io u8DH}@}9DH I9uHHH4HHH9b21HpH9NrqHpH98rqHpH9"r q HpH9 rqHpH9rHqH9BAw1D44HH9u144HH9uUHAWAVAUATSHHLHRL_HHHLKH1HIIIIHLIMHLHMM9AHHHLHHILH9A/I%HMI4E1HI L,@($. H|$L<LL$RL4n,Fn6IģQ".I" Lyn<@yn(ăA"$(Q"lMl}8^}9^u8~yyWģy'}9L~yyQģy!LL9L$KHHHHIHHIH9%W& s* I^,A HNIH9Ws* I^,A HNIH9Ws* I^,A HNIH9Ws* I^,A HNIH9Ws* I^,A HNIH9ZWHs* I^,A IH93Ws* ^,AwHe[A\A]A^A_]H~IB I9QHCHCH(+ 11Hff.zo$]8DH^}9^u8x}9DH H9uHHHIIH9tgW% s* ^,AHPH9}BWs*J^,ASHPH9}#Ws*J^,ASHPH9LwHe[A\A]A^A_]H6M9HIB I9IC I9HCHH(* 11Hzoe8DH^}9^u8x}9DH H9uHHHIIH9#W# s* ^,AHPH9Ws*J^,ASHPH9Ws*J^,ASHPH9Ws*J ^,AS HPH9Ws*J^,ASHPH9nWHs*J^,ASH9KWs*J^,ACwff.@ " 1fDWH{*I^,A IH9uHe[A\A]A^A_] ~" 1@W{*^,AHH9u L" 1W{*^,AHH9u`ff.LLJHHWH>It5H1f.0HL2LH9uff.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH4HHH9t:02HqH9~-prHqH9~prHqH9~p r HqH9wËprHqH9~pHrH9~ދ@BwH~HH H9r[HOHvQI11IfDom8DH }9D H I9u+1f44HH9u1ɋ44HH9uff.LLJHOHH>IH1fDHL؉LH9uHHA H9HGHI11Ioe8DH}9DH I9uHHH4HHH9t$2މ1HpH9}rމqHpH9wI%H9CH~HA H9HB @H9@HGHI11Iff.fom8DH}9DH I9uHHH4HHH9P2މ1HpH9=rމqHpH9(rމqHpH9r މq HpH9rމqHpH9rHމqH9B؉Aw1ff.f4މ4HH9u14މ4HH9uf.LLJHGHH>It5Hu1f.2HLLH9ufIuH9;H1H H9H 8@H9@UHOHGIHHo;$ Io# o-# Io9E8AH HoyE8Ivoyv}+E8IoyE8qvvu+gF}9FL9\HHHHH9tH)H fD EHHH9wwH~H L8H9@L9@8HOH*IHHo# Iox" o-" Ifo9E8AH HoyE8Ivoyv}+E8IoyE8qvvu+gF}9FL9\HHHHH9DDEHHL9r1DEHH9u1DEHH9u@LLJHOHH>IH1fDHLЉLH9uHHA H9HGHI1v1Ioe8DH}9DH I9uHHH4HHH9t$2։1HpH9}r։qHpH9wI%H9CH~HA H9HB @H9@HGHI1v1Iff.fom8DH}9DH I9uHHH4HHH9P2։1HpH9=r։qHpH9(r։qHpH9r ։q HpH9r։qHpH9rH։qH9BЉAw1ff.f4։4HH9u14։4HH9uf.LLGHOLLZHzH6M9UHHItOAQAPHPH9$O AQ AP HPH9 OAQAPHPH9OAQHAPH9OAAA@wCCIL9ujB DCIL9uOHFHFHv`HDL$H1}XL$Ho0M8@HH uG@}9@H9uIIJOAQAPHPH9$O AQ AP HPH9 OAQAPHPH9OAQHAPH9OAAA@wCCIL9ujB DCIL9uOHFHFHv`HDL$H1}XL$Ho0M8@HH uF@}9@H9uIIJItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o HI}Xl$Ho  o If.o9E8AH HoyE8avoyv}+E8aoyE8qvv]+gF}9FL9\HHHHH9tH)H fD9HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$o5 HI}Xl$Ho o Io:E8BH HozE8bvozv}+E8bozE8rvv]+gF}9FI9\HHHHH9H)H ff.D9 HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIo 1o  o2 Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o HI}Xl$Ho e o} If.o9E8AH HoyE8avoyv}+E8aoyE8qvv]+gF}9FL9\HHHHH9tH)H fD9HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$o HI}Xl$Ho o Io:E8BH HozE8bvozv}+E8bozE8rvv]+gF}9FI9\HHHHH9H)H ff.D9 HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIo 1o z o Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o^ HI}Xl$Ho o If.o9E8AH HoyE8afoyf}+E8aoyE8qff]+gF}9FL9\HHHHH9tH)H fD;HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$o HI}Xl$Ho \ ot Io:E8BH HozE8bfozf}+E8bozE8rff]+gF}9FI9\HHHHH9H)H ff.D; HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIod 1o o Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o HI}Xl$Ho % o= If.o9E8AH HoyE8afoyf}+E8aoyE8qff]+gF}9FL9\HHHHH9tH)H fD;HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$oU HI}Xl$Ho oԻ Io:E8BH HozE8bfozf}+E8bozE8rff]+gF}9FI9\HHHHH9H)H ff.D; HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIoĺ 1o : oR Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o HI}Xl$Ho o If.o9E8AH HoyE8afoyf}+E8aoyE8qff]+gF}9FL9\HHHHH9tH)H fD;HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$o HI}Xl$Ho  o4 Io:E8BH HozE8bfozf}+E8bozE8rff]+gF}9FI9\HHHHH9H)H ff.D; HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIo$ 1o o Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o~ HI}Xl$Ho o If.o9E8AH HoyE8afoyf}+E8aoyE8qff]+gF}9FL9\HHHHH9tH)H fD;HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$o HI}Xl$Ho | o Io:E8BH HozE8bfozf}+E8bozE8rff]+gF}9FI9\HHHHH9H)H ff.D; HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIo 1o o Iff.oHLZLRH~41ff.AA0@HIM1LH9u[HLGL LZHLRH6L9t.1H~#9MHLLAMH9uMuM9uȋH~1DDD9ALHLH9uff.@HLGL LZHLRH6L9t.1H~#9NHLLAMH9uMuM9uȋH~1DDD9AOHLH9uff.@ATUSLLLGLHHZHjMAA1AxL@tltgDEtҨtuHMIHI9tBAAySH5t H=-H8X[]A\I[]A\ff.AWAVAUATUSHL6L/HoLgLHzLzM~P1!@AEA$HMHMI9t+MuH|$L$VKL$H|$A$H[]A\A]A^A_ÐHOHz1HH~f.HHH9uff.fLLJHHWH>It%H~1fD0HL2LH9u@IuH9tH~1fD44HH9u1H~̐44HH9uAUATUSH LHRLWHH{HcL[H1HIHIIHHILHLHML9AHHHLHHILH9AIILLE1ILL$I4IH,RfnfnILfnfnLfbfbflfoffs ffpfpfbf~fofpUf~ fofjfpf~ Pf~(LM9uHHHHIHHIH9t9AIAHFIH9~!AHIAIH9~ AA[]A\A]H{M9H~IBI9IAI9HCHH11HAoHfoffs ffpfpfbA HH9uHHHILH9LA ɉHJH97AIHɉHH9 AQ҉P1fDAHIAIH9u[]A\A]HIBI9HCHH11Hf.AoHfoffs ffpfpfbA HH9uHHHILH9\A ɉHJH9GAIHɉHH9+1AAHH9u1AAHH9uff.AUATUSH LHRLWHH;H'L[H1HIHIIHHILHLHML9AHHHLHHILH9AIIf(- f(% LILLE1f(Ї I4IH,RfL$@fn<fnILfnfbfn<Lfbf(flf(fpffTfXf(f^f(ffTfXf(f^ff(f(fTfrf\f(fffD(frfDTLjfA\fflffpUf~f~ fofjfpf~ Pf~(LM9HHHHIHHIH9tvAf : IH*f(^H,AHFIH9~CAff(HIH*^H,AIH9~AfH*^H,A[]A\A]@HM9H~IAI9IBI91HCH#Hf(-Ӆ 11f(% f(υ HfAf(AoHffTfXf(f^fpf(ffTfXf(f^f(ff(frfTf\f(fffD(frfDTLjfA\fflfAHH9XHHHILH9A f  H*f(^H,͉HJH9AIff(HH*^H,ΉHH9eAQfH*^H,щPGf  1fDAff(HIH*^H,AIH9u[]A\A]HIAI9HCHHf(- 11f(% f( HfAf(AoHffTfXf(f^fpf(ffTfXf(f^f(ff(frfTf\f(fffD(frfDTLjfA\fflfAHH9XHHHILH9A f } H*f(^H,͉HJH9AIff(HH*^H,͉HH90 [} 1Aff(H*^H,AHH9uY $} 1Aff(H*^H,AHH9u#ff.LLJHHWH>It%H~1fD0HL2LH9u@IuH9H~HHH9HJ@H9@HOHI11IDoH HI9uHHH HHH9w HNH9fHHJH9S@BHCHHH9rOHOHvEI11If.o H HI9uk144HH9u1ɋ44HH9uff.LLJHOHH>It%H~1fDHL؉LH9ufIuH9H~HAH9HB@H9@'HGHI1f1IofoHfHI9uHHHHHH9q ىHNH9^JHىHH9IRډPH7HAH9HGHI1f1IofoHfHI9uHHHHHH9 ىHNH9JHىHH9`1D4މ4HH9u14މ4HH9uf.LLJHGHH6It%H~1fD:HLLH9uÐIuH9PH~H H9H 0@H9@`HNHRIHfHIfoW~ fo~ I@ooIHH@fvfvfffofafifofifaoafaoIfvffvfffofafifofifafaffgGL9tHHHHH9DHyEH9zHy@H9DZHyE@H9DR HyE@H9DJHyE@H9DBHyE@H9gzHy@H9QDZHyE@H99DR Hy E@H9!DJ$Hy E@ H9 DB(Hy E@ H9z,Hy @ H9DZ0Hy E@ H9DR4E@ HH9DJ8E@HH H9H 0@H9@'HNHIHfHIfo| fo{ IooIHH@fvfvfffofafifofifaoafaoIfvffvfffofafifofifafaffgGL9tHHHHH9DHyEH9DRHyE@H91@DEHH9u1D EHH9uff.LLJHOHH>It%H~1fDHLЉLH9ufIuH9H~HAH9HB@H9@#HGHI1fv1IoHfHI9uHHHHHH9u щHNH9bJHщHH9MR҉PH;HAH9HGHI1fv1I@oHfHI9uHHHHHH9 щHNH9JHщHH9`1f4։4HH9u14։4HH9uf.LLGHOLLZHzH6M9*ItIt=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@/HWH!DD$IHHfn\$IfoI IfpfoI fDooJHH@fvfvfffofafifofifaobfaoJfvffvfffofafifofifafaffgFL9tHHHHH9D9HrH9D9@HrAH9D9@HrAH9D9@ HrAH9~D9@HrAH9iD9@HrAH9TD9@HrAH9?D9@HrAH9*D9@ Hr AH9D9@$Hr A H9D9@(Hr A H9D9@,Hr A H9D9@0Hr A H9D9@4A HH9D9@8AIhDH9H|HH9H9@H9@HGHDL$IHHfn\$IfoG IfpfoEG DooHHH@fvfvfffofafifofifao`faoHfvffvfffofafifofifafaffgFL9tHHHHH9xD9 HpH9eD9JHpAH9PD9JHpAH9;D9J HpAH9&D9JHpAH9D9JHpAH9D9JHpAH9D9JHpAH9D9J Hp AH9D9J$Hp A H9D9J(Hp A H9D9J,Hp A H9~D9J0Hp A H9iD9J4A HH9TD9J8AIH9H9QH&H4L 9L2L9AL9AHE H9@L9AD AdHwHVIfo4E foD 1IfDo<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9AP9PHVAH9jAP9PHVAH9RAP9PHVAH9:AP 9P HV AH9"AP$9P$HV A H9 AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF9 BIL9uF9B IL9uHlF9 BII9uHO@F9BII9uH/HwHIfo{B fo3B 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9I9.DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9fDR$LF D9P$A L9MDR(LF D9P(A L94DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[Ifo!@ fo? 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9pDRLFD9PAL9WDRLFD9PAL9>DRLFD9PAL9%DR LF D9P AL9 DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@/HWH!DD$IHHfn\$Ifo< Ifpfo< fDooJHH@fvfvfffofafifofifaobfaoJfvffvfffofafifofifafaffgFL9tHHHHH9D9HrH9D9@HrAH9D9@HrAH9D9@ HrAH9~D9@HrAH9iD9@HrAH9TD9@HrAH9?D9@HrAH9*D9@ Hr AH9D9@$Hr A H9D9@(Hr A H9D9@,Hr A H9D9@0Hr A H9D9@4A HH9D9@8AIhDH9H|HH9H9@H9@HGHDL$IHHfn\$Ifo: IfpfoE: DooHHH@fvfvfffofafifofifao`faoHfvffvfffofafifofifafaffgFL9tHHHHH9xD9 HpH9eD9JHpAH9PD9JHpAH9;D9J HpAH9&D9JHpAH9D9JHpAH9D9JHpAH9D9JHpAH9D9J Hp AH9D9J$Hp A H9D9J(Hp A H9D9J,Hp A H9~D9J0Hp A H9iD9J4A HH9TD9J8AIH9H9QH&H4L 9L2L9AL9AHE H9@L9AD AdHwHVIfo48 fo7 1IfDo<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HL9]HHLHLIH9A9HVH9AP9PHVAH9AP9PHVAH9AP 9P HVAH9AP9PHVAH9AP9PHVAH9jAP9PHVAH9RAP9PHVAH9:AP 9P HV AH9"AP$9P$HV A H9 AP(9P(HV A H9AP,9P,HV A H9AP09P0HV A H9AP49P4HVA H9Ax89x8AF9 BIL9uF9B IL9uHlF9 BII9uHO@F9BII9uH/HwHIfo{5 fo35 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9I9.DRLFD9PAI9DRLFD9PAI9DR LFD9P AI9DPLFD9RAI9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9fDR$LF D9P$A L9MDR(LF D9P(A L94DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9@89B8AHHwH[Ifo!3 fo2 1Io<ooLfvo|fvo| ffoffafifofafiod0faoL ffvo|0fvffoffafifofafifaffg1HI9]HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9pDRLFD9PAL9WDRLFD9PAL9>DRLFD9PAL9%DR LF D9P AL9 DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9DR0LF D9P0A L9DR4D9P4A HH9z89x8A1DD91HH9u1{1ÐLLJLRHOHWHH>It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@HWHDD$fnt$IHfo%0 IHfo/ fpfo%/ IffooJHH@fffffffffofafifofifaojfaoJffffffffffofafifofifafaffgFL9dHHHHH9D;HrH9D;@HrAH9D;@HrAH9{D;@ HrAH9fD;@HrAH9QD;@HrAH9It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@HWHDD$fnt$IHfoU" IHfo" fpfo%! IffofoHH@oJfffffofoffffofofoffafifofafiojfaoJffffffofoffffofoffafifofafifaffgFL9DHHHHH9D;HrH9D;@HrAH9pD;@HrAH9[D;@ HrAH9FD;@HrAH91D;@HrAH9D;@HrAH9D;@HrAH9D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9tD;@8AI8DH9XHLHH9H9@H9@ HGHDL$fnt$IHfo IHfo fpfo%@ IffooHHH@fffffffffofafifofifaohfaoHffffffffffofafifofifafaffgFL9dHHHHH9(D; HpH9D;JHpAH9D;JHpAH9D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9mD;J$Hp A H9XD;J(Hp A H9CD;J,Hp A H9.D;J0Hp A H9D;J4A HH9D;J8AIH90H9HH4L 9L2L9AL9AHE H9@L9AD AHwHIfo 1fo: fo% IfDoo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HL9=HHLHLIH9A9HVH9jAP9PHVAH9RAP9PHVAH9:AP 9P HVAH9"AP9PHVAH9 AP9PHVAH9AP9PHVAH9AP9PHVAH9AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9zAP,9P,HV A H9bAP09P0HV A H9JAP49P4HVA H92Ax89x8AF; BIL9uF;B IL9uHfF; BII9uH@F;BII9uHHwH Ifo+ 1foQ fo% Ioo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HI9=HHLHLLH9DLFD9I9DRLFD9PAI9mDRLFD9PAI9TDR LFD9P AI9;DPLFD9RAI9"DRLFD9PAL9 DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9sDR0LF D9P0A L9ZDR4D9P4A HH9A@89B8AH-HwHIfo 1fo fo%W Ioo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HI9=HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9nDRLFD9PAL9UDR LF D9P AL9It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@HWHDD$fnt$IHfo IHfoF fpfo% IffofoHH@oJfffffofoffffofofoffafifofafiojfaoJffffffofoffffofoffafifofafifaffgFL9DHHHHH9D;HrH9D;@HrAH9pD;@HrAH9[D;@ HrAH9FD;@HrAH91D;@HrAH9D;@HrAH9D;@HrAH9D;@ Hr AH9D;@$Hr A H9D;@(Hr A H9D;@,Hr A H9D;@0Hr A H9D;@4A HH9tD;@8AI8DH9XHLHH9H9@H9@ HGHDL$fnt$IHfo IHfo fpfo%p IffooHHH@fffffffffofafifofifaohfaoHffffffffffofafifofifafaffgFL9dHHHHH9(D; HpH9D;JHpAH9D;JHpAH9D;J HpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;JHpAH9D;J Hp AH9mD;J$Hp A H9XD;J(Hp A H9CD;J,Hp A H9.D;J0Hp A H9D;J4A HH9D;J8AIH90H9HH4L 9L2L9AL9AHE H9@L9AD AHwHIfoD 1foj fo% IfDoo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HL9=HHLHLIH9A9HVH9jAP9PHVAH9RAP9PHVAH9:AP 9P HVAH9"AP9PHVAH9 AP9PHVAH9AP9PHVAH9AP9PHVAH9AP 9P HV AH9AP$9P$HV A H9AP(9P(HV A H9zAP,9P,HV A H9bAP09P0HV A H9JAP49P4HVA H92Ax89x8AF; BIL9uF;B IL9uHfF; BII9uH@F;BII9uHHwH Ifo[ 1fo fo% Ioo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HI9=HHLHLLH9DLFD9I9DRLFD9PAI9mDRLFD9PAI9TDR LFD9P AI9;DPLFD9RAI9"DRLFD9PAL9 DRLFD9PAL9DRLFD9PAL9DR LF D9P AL9DR$LF D9P$A L9DR(LF D9P(A L9DR,LF D9P,A L9sDR0LF D9P0A L9ZDR4D9P4A HH9A@89B8AH-HwHIfo 1fo fo% Ioo olot0ffffoLfffffffoffafifofafiol faoL fffffol0fffffoffafifofafifaffg1HI9=HHLHLLH9DLFD9L9DRLFD9PAL9DRLFD9PAL9DR LFD9P AL9DRLFD9PAL9DRLFD9PAL9DRLFD9PAL9nDRLFD9PAL9UDR LF D9P AL9It=Mu IH~$1DD9HLLLH9u@IMuIuDH9H~HH9H9@H9@HWHDD$fnt$IHfo IHfov fpfo%) IffooJHH@fffffffffofafifofifaojfaoJffffffffffofafifofifafaffgFL9dHHHHH9D;HrH9D;@HrAH9D;@HrAH9{D;@ HrAH9fD;@HrAH9QD;@HrAH9x zH~AI9'x z H~ AI9x$ z$H~ A I9x( z(H~ A I9x, z,H~ A I9x0 z0H~ A I9x4 z4A HI9R8 P8AMIqHQLfo 1ffoY Ho4ooLo| fotfvfot0fvffoffafifofafiod0faoL ffffvfvfffofafifofifafaffg1HH9MLHH<HHHL9o8 :H~I9vx zH~AI9_x zH~AI9Hx z H~AI91x zH~AI9x zH~AI9x zH~AI9x zH~AI9x z H~ AI9x$ z$H~ A I9x( z(H~ A I9x, z,H~ A I9yx0 z0H~ A I9bx4 z4A HI9K@8 B8A1< <1HI9u11@ÐSLLGHOH>HLZLRH~,1AA0@HIM1LH9u[ff.@LLJHOHH>IH1fDHLLH9uHHA H9HGHI11If.om8DH}@}9DH I9uHHH4HHH9t&21HpH9}rqHpH9wI%H9DH~HA H9HB @H9@HGHI11Io u8DH}@}9DH I9uHHH4HHH9b21HpH9NrqHpH98rqHpH9"r q HpH9 rqHpH9rHqH9BAw1D44HH9u144HH9uUHAWAVAUATSHHLHRL_HHHLKH1HIIIIHLIMHLHMM9AHHHLHHILH9AIH(% ( L<HMI4E1( I L,@WH|$L4LL$R@nA" Lyn<@ăA"<(Mll}8}9TX^TX^Tr\ETr}\u8MF MF1ppl~yyWģy'}9L~yyQģy!LL9L$HHHHIHHIH9A W # I*^,A HNIH9A WI*^,A HNIH9gA WI*^,A HNIH9<A WI*^,A HNIH9A WI*^,A HNIH9A WHI*^,A IH9AW*^,AwHe[A\A]A^A_]H~IB I9\HCHNH(% 11( ( HWff.@zo<E8DH}9TX^TX^Tr\ETr}\u8MF MF1pplx}9DH H9RHHHIIH9tsAW *^,AHPH9}JARW*^,ASHPH9}'ARW*^,ASHPH9wHe[A\A]A^A_]H&M9GH/IB I9IC I9^HCHPH(% 11(S (+ HWzo<E8DH}9TX^TX^Tr\ETr}\u8MF MF1pplx}9DH H9RHHHIIH9AW *^,AHPH9ARW*^,ASHPH9[ARW*^,ASHPH94AR W*^,AS HPH9 ARW*^,ASHPH9ARWH*^,ASH9ABW*^,ACwf 1fDA WHI*^,A IH9uHe[A\A]A^A_] 1AW*^,AHH9u 1AW*^,AHH9uQfDLLJHHWH>It5H1f.0HL2LH9uff.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH4HHH9t:02HqH9~-prHqH9~prHqH9~p r HqH9wËprHqH9~pHrH9~ދ@BwH~HH H9r[HOHvQI11IfDom8DH }9D H I9u+1f44HH9u1ɋ44HH9uff.LLJHOHH>IH1fDHL؉LH9uHHA H9HGHI11Ioe8DH}9DH I9uHHH4HHH9t$2މ1HpH9}rމqHpH9wI%H9CH~HA H9HB @H9@HGHI11Iff.fom8DH}9DH I9uHHH4HHH9P2މ1HpH9=rމqHpH9(rމqHpH9r މq HpH9rމqHpH9rHމqH9B؉Aw1ff.f4މ4HH9u14މ4HH9uf.LLJHGHH>It5Hu1f.2HLLH9ufIuH9;H1H H9H 8@H9@UHOHGIHHo{ Io o- Io9E8AH HoyE8Ivoyv}+E8IoyE8qvvu+gF}9FL9\HHHHH9tH)H fD EHHH9wwH~H L8H9@L9@8HOH*IHHoD Io o- Ifo9E8AH HoyE8Ivoyv}+E8IoyE8qvvu+gF}9FL9\HHHHH9DDEHHL9r1DEHH9u1DEHH9u@LLJHOHH>IH1fDHLЉLH9uHHA H9HGHI1v1Ioe8DH}9DH I9uHHH4HHH9t$2։1HpH9}r։qHpH9wI%H9CH~HA H9HB @H9@HGHI1v1Iff.fom8DH}9DH I9uHHH4HHH9P2։1HpH9=r։qHpH9(r։qHpH9r ։q HpH9r։qHpH9rH։qH9BЉAw1ff.f4։4HH9u14։4HH9uf.LLGHOLLZHzH6M9UHHItOAQAPHPH9$O AQ AP HPH9 OAQAPHPH9OAQHAPH9OAAA@wCCIL9ujB DCIL9uOHFHFHv`HDL$H1}XL$Ho0M8@HH uG@}9@H9uIIJOAQAPHPH9$O AQ AP HPH9 OAQAPHPH9OAQHAPH9OAAA@wCCIL9ujB DCIL9uOHFHFHv`HDL$H1}XL$Ho0M8@HH uE@}9@H9uIIJItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$oނ HI}Xl$Ho E o] If.o9E8AH HoyE8avoyv}+E8aoyE8qvv]+gF}9FL9\HHHHH9tH)H fD9HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$ou HI}Xl$Ho ܀ o Io:E8BH HozE8bvozv}+E8bozE8rvv]+gF}9FI9\HHHHH9H)H ff.D9 HHH9wIH91H9HH4L 8L1L9AL9AHE H9@L9AD AHwHIo 1o Z or Iff.oItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9H~H H9H 8@H9@}HOHoIDD$o>z HI}Xl$Ho y oy If.o9E8AH HoyE8avoyv}+E8aoyE8qvv]+gF}9FL9\HHHHH9tH)H fD9HHH9wwIPD H9RHlHH9H8@H9@HWHIDL$ox HI}Xl$Ho ItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9CH~H H9H 8@H9@HOHIDD$oq H}Xt$Io%q Hop o-q Iff.o9E8AH HoyE8Ioyff}+E8IoyE8yffu+gN}9NL9LHHHHH9tH)H fD;HHH9wwI0D H9HLHH9H8@H9@=HWH/IDL$oup H}Xt$Io%o Hoto o-o IDo:E8BH HozE8Jozff}+E8JozE8zffu+gN}9NI9LHHHHH9H)H ff.D; HHH9wkIH9QH9HH4L 8L1L9AL9AHE H9@L9AD A"HwHIo%dn on 1om o-m IfDo4M8Do4M8Lot o|`E8|pfM8L0ot M8t0fot@}+M8LPot@M8tPfot`M8tpfu+g0}9D0H L9HHLH9IIOLLDD90HH9yF; BIL9uF;BIL9uHff.@F; BII9uHF;BII9uHnHwH'Io%Zl ol 1ok o-k Io4M8Do4M8Lo| ot M8t0fE8L0o|@fot@M8tP}+E8LPo|`E8|pfot`M8tpfu+g0}9D0H I9HHLHLLH9wIH)IILLDDD90HH9|HHwHIo%j ok 1o5j o-Mj Io4M8Do4M8Lot o|@fM8L0ot M8t0fot@M8tP}+E8LPfot`M8|pot`M8tpfu+g0}9D0H L9HHLHLLH9 wIH)IILLDD90HH9|1DD90HH9u11UHHLLJLRHOHGHH>ItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9CH~H H9H 8@H9@HOHIDD$oh H}Xt$Io%Hh Hog o-g Iff.o9E8AH HoyE8Ioyff}+E8IoyE8yffu+gN}9NL9LHHHHH9tH)H fD;HHH9wwI0D H9HLHH9H8@H9@=HWH/IDL$o5g H}Xt$Io%f Ho4f o-Lf IDo:E8BH HozE8Jozff}+E8JozE8zffu+gN}9NI9LHHHHH9H)H ff.D; HHH9wkIH9QH9HH4L 8L1L9AL9AHE H9@L9AD A"HwHIo%$e o|e 1od o-d IfDo4M8Lo4M8Do| ot M8t0fE8L0o|@fot@M8tP}+E8LPfot`M8|pot`M8tpfu+g0}9D0H L9HHLH9IIOLLDD90HH9yF; BIL9uF;BIL9uHff.@F; BII9uHF;BII9uHnHwH'Io%c orc 1ob o-b Io4M8Lo4M8Dot fM8L0ot M8t0fot@}+M8LPot@M8tPfot`M8|pot`M8tpfu+g0}9D0H I9HHLHLLH9wIH)IILLDDD90HH9|HHwHIo%a oa 1o` o- a Io4M8Lo4M8Do| ot M8t0fE8L0o|`E8|pfot@}+M8LPot@M8tPfot`M8tpfu+g0}9D0H L9HHLHLLH9 wIH)IILLDD90HH9|1DD90HH9u11UHHLLJLRHOHGHH>ItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9CH~H H9H 8@H9@HOHIDD$o~_ H}Xt$Io%_ Ho}^ o-^ Iff.o9E8AH HoyE8Ioyff}+E8IoyE8yffu+gN}9NL9LHHHHH9tH)H fD;HHH9wwI0D H9HLHH9H8@H9@=HWH/IDL$o] H}Xt$Io%] Ho\ o- ] IDo:E8BH HozE8Jozff}+E8JozE8zffu+gN}9NI9LHHHHH9H)H ff.D; HHH9wkIH9QH9HH4L 8L1L9AL9AHE H9@L9AD A"HwHIo%[ o<\ 1oR[ o-j[ IfDo4M8Lo4M8Do| ot M8t0fE8L0o|@fot@M8tP}+E8LPfot`M8|pot`M8tpfu+g0}9D0H L9HHLH9IIOLLDD90HH9yF; BIL9uF;BIL9uHff.@F; BII9uHF;BII9uHnHwH'Io%Y o2Z 1oHY o-`Y Io4M8Lo4M8Dot fM8L0ot M8t0fot@}+M8LPot@M8tPfot`M8|pot`M8tpfu+g0}9D0H I9HHLHLLH9wIH)IILLDDD90HH9|HHwHIo%GX oX 1oW o-W Io4M8Lo4M8Do| ot M8t0fE8L0o|`E8|pfot@}+M8LPot@M8tPfot`M8tpfu+g0}9D0H L9HHLHLLH9 wIH)IILLDD90HH9|1DD90HH9u11UHHLLJLRHOHGHH>ItEMu IH~,1ff.@DD9HLLLH9uIMuIuDH9CH~H H9H 8@H9@HOHIDD$o>V H}Xt$Io%U Ho=U o-UU Iff.o9E8AH HoyE8Ioyff}+E8IoyE8yffu+gN}9NL9LHHHHH9tH)H fD;HHH9wwI0D H9HLHH9H8@H9@=HWH/IDL$oT H}Xt$Io%?T HoS o-S IDo:E8BH HozE8Jozff}+E8JozE8zffu+gN}9NI9LHHHHH9H)H ff.D; HHH9wkIH9QH9HH4L 8L1L9AL9AHE H9@L9AD A"HwHIo%R oR 1oR o-*R IfDo4M8Do4M8Lot o|`E8|pfM8L0ot M8t0fot@}+M8LPot@M8tPfot`M8tpfu+g0}9D0H L9HHLH9IIOLLDD90HH9yF; BIL9uF;BIL9uHff.@F; BII9uHF;BII9uHnHwH'Io%P oP 1oP o- P Io4M8Do4M8Lo| ot M8t0fE8L0o|@fot@M8tP}+E8LPo|`E8|pfot`M8tpfu+g0}9D0H I9HHLHLLH9wIH)IILLDDD90HH9|HHwHIo%O o_O 1ouN o-N Io4M8Do4M8Lot o|@fM8L0ot M8t0fot@M8tP}+E8LPfot`M8|pot`M8tpfu+g0}9D0H L9HHLHLLH9 wIH)IILLDD90HH9|1DD90HH9u11UHSHL LZHZLGHWHLItTMu IM~61ff.A8@HLM!HL9uH]@IFMuHuAH9M~ЅJ@H9J@H9@<IBH.MoL HIoK o% L IЉD$}Xt$Hfo8E8@H HoxE8Hvoxvvv}+E8HoxE8xvvvvu+gN}9NL9 o%> Hf.o4M8Lo4M8Do| ot M8t0E8L0vo|@ot@M8tPv}+E8LPot`M8|pot`M8tpvvu+g0}9D0H H9LHH<I9IIJHLZLRH~41ff.AA0@HIM1LH9u[HLGL LZHLRH6L9t.1H~#9CHLLAMH9uMuM9uȋH~1DDD9ABHLH9uff.@HLGL LZHLRH6L9t.1H~#9FHLLAMH9uMuM9uȋH~1DDD9AGHLH9uff.@ATUSLLLGH*HHZLZM~P1AfAtIAtADEftҨtuHIILI9u[]A\DAWAVAUATUSHL6L/HoLgLHzLzM~P1"@AE1A$HMHMI9t*MuH|$L$UL$H|$A$fH[]A\A]A^A_ÐHOHz1HH~f.HHHH9uff.LLJHHWH>It%H~1fDH0HLH2LH9ufIuH9tH~1fDH4H4HH9u1H~H4H4HH9ufDHLLBHLHMUL1HSIZHIHHMHIHHLHML9AHHHLMHIHH9A>H4LHOLHH~HHfofofs ffffs ffBLH9uLLHHHLHI9t HHH[]@IL9MHGI9IAH9IL11H@Ao Hfofofs ffffs fHH9uLHHIHI9t4HHHÐ1fDIHIHHLI9u[]@M~HGH9roItiL11HfAo Hfofofs ffffs fHH9uK1IHHHI9u1IHHHL9ufLLJHOHH>ItEH~8 - 1fDff(HH*L^H,HLH9uIuH9t:H~ , 1fDff(H*^H,H4HH9u1 , H~@ff(H*^H,H4HH9uLHLJHH6It%H~1fDHHLHLH9ufIuH9ttH~HPH9HWH9HVHI11I@oHHI9uHHHHHH9tHHHuHPH9rIHVHv?I11Io H HI9u1fDH H HH9u1H H HH9ufLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1f1If.ofoHfHI9uHHHHHH9dHHHHQHAH9rUHGHvKI1f1IofoHfHI9u1fDH4HH4HH9u1H4HH4HH9uff.LLJHHWH6It%H~1fDH8HLLH9uÐIuH9t H~1fDH< HH9u1H~fDH< HH9uDLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1fv1If.oHfHI9uHHHHHH9hHHHHUHAH9rQHGHvGI1fv1I@oHfHI9u1fH4HH4HH9u1H4HH4HH9u@LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9HIIIHIHH9uJHKIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&HHHtGHD$HL1~L$HfloHHfBH9uHHMH9IHHtLH11HoAoHfAHH9uHHHIHIH9mIHIHZHtH11HAoo$HfAHH9u1HIIHH9uff.LLOHOLLZHzH6M9ItHD$~L$11IIfl@ofoHfAHI9uHHHHIH9fH+I@I)M9I9H6I@IyI9I9 HAI9H9@ HFHH11Hf.AooHfAHH9uHHHIHIH9IH+IIH)IHH9uHJ+KIL9uHdHtLHD$IH1~L$Iflɐo"foHHfBL9uHHH H9H+HHHtGHL$HL1~L$HfloHHf@H9uHHMH9I)HHH11HAoo,HfAHH9uHeHH11HAoo4HfAHH9ui1IH+IHH9uAWAVAUATUSH/LOHLRL_HZLL9`HfHu HMAMhL1HIIHIIMLHMMHHILHLIIM9AHHIHH9@A HHHHLH9HHHLI9 AIML4L,HIO$LL1~~!H$LLfofofofs fs fffffs ffBLL9uLLHHHHHHLLI9t HHH[]A\A]A^A_fHFHIIL9M~HUI9IQH9IPHHD$~\$11LflHfofs fDoLHfofofs fffffs fAHH9uLHHHLI9HEH[]A\A]A^A_ÐHL9HuMI@HLfo! L1HH @~foHfs Hfoffofs ffffs fH9ufofofsfs fofofs fffofffs ffH~HLHHHIL9tVHPI I3I9~EH1HHHI9~4H2HHHI9~$H2HHHI9~HH2HI9~H2HuIgHUM9&MIII9IK@I9@IHHHT$~\$11LflHfofs f.Ao Hfofofs fffffs fAHH9uLHHI II9HI[]A\A]A^A_Ð1fDHUIHHIIMI9u[]A\A]A^A_IOL98M9M~HEIII9H9 ICI9I9 Ȅ+I!L11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHDI LI9f.HTHIHI9uI HI HI9u~MuIt{HT$LL1~\$Hflfofs foHHfofofs fffffs f@H9uLHMI9IIMItsHD$LH1~\$Hflfofs o HHfofofs fffffs fBH9uLHHlI9fHEHEXMOItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9IHEIMItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9:HEII*11HTIIHI9ufLLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH#IIH!IHH9uJH!KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H!HHtGHD$HL1~L$HfloHHfBH9uHHMH9I!HHtLH11HoAoHfAHH9uHHHIHIH9mHI#IHZHtH11HAoo$HfAHH9u1IH#IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH IIH IHH9uJH KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H HHtGHD$HL1~L$HfloHHfBH9uHHMH9I HHtLH11HoAoHfAHH9uHHHIHIH9mHI IHZHtH11HAoo$HfAHH9u1IH IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH3IIH1IHH9uJH1KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H1HHtGHD$HL1~L$HfloHHfBH9uHHMH9I1HHtLH11HoAoHfAHH9uHHHIHIH9mHI3IHZHtH11HAoo$HfAHH9u1IH3IHH9uff.SLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(HcI11H\$~L$IfDAoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtFHcIL1H\$~L$IoHHf@I9uHHMH9I [1HfH IHIHH9u[H1H IHIHH9u[ÐSLLOLHZHLZH6M9ItCMu IH~%1DHIHMLHIIH9u[IMuHuHM9H~f.KHKII9u[f.M^L9UIH~1@HHLHH9uI[fH2II9tpHKDJ HHKII9u[HM9txI9H1DH IHIHH9u[HDJ HHJII9u[HfDKIt5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufSL LRHZHOHWLH?ItLMu IM~.1fDH?H9AHLLD!HL9u[IMuHuHH9M~H@J<!BIM9u[HiHH9~M~H@fDJ<!B IM9u[H!H9H9M91H<@H<AD!@4HL9u[M HDJ<!BIM9u[MHJ<!BIM9u[1M@H<@H<AD!@4HL9u[M1H<@H<AD!@4HL9u[DLLJLZHGHWHLIt5MuItrM~ 1H9H :HLLLL9u@ItrMuIuHH9M~fDHJ 4BIM9uf.IuH H9t`M~DHJ 4BIM9ufITH9twH9Mb1DHHLZLRH~*1I9I8@HIM1LH9u[ÐUHAVAUATSH LHRLWHHvH]L[H1HIIIIHLIMHLHMM9AHHHLHHILH9AIILLE1ILL,I4IL$R~~'I""LL}8s s }9Pģ LM9uHHHHIHHIH9IIHIHFIH9IHIHIIH9IHIw[A\A]A^]HM9H~IB I9IA I9HCHH11Hzo,U8LHs s x}9DH H9uHHHILH9uEw[A\A]A^]1ff.IHIHIIH9u[A\A]A^]I HHHJH9}IIHHHHH9~IQHHPwHIB I9HCHH11Hzo4M8LHs s x}9DH H9uHHHILH9I HHHJH9IIHHHHH9)1IHIHH9u1IHIHH9uf.LLJHOHH>ItEH~4 1fDWH*L^,HLH9uff.IuH9t6H~ 1fDW*^,HHH9u1 H~W*^,HHH9uff.@LLJHHWH>It5H1f.H0HLH2LH9uf.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH HHH9t HH HNH9~HHHHJH9wH@HBwH~HH H9rcHOHvYI11Iff.om8DH }9D H I9u[1fH4H4HH9u1H4H4HH9uf.LLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI11Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI11Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LLJHGHH>It5HS1f.H:HLLH9ufIuH9HH H9H 8@H9@HOHIHHo Io% o- Io9E8AH Ho E80})o@M)}F }F1pplE8Po`E8p})M)}F }F1ppoyE8yloqE)}+M8Iu)uF uF1oypplE8IoyE8yu)E)cuF uF1p}plu+gN}9NL9HHHHH9t'H)H ff.H:HHH9rwH~H L8H9@L9@HOH IHHov Io%j o- Iff.oe8AH Ho e80})M)}F }F1o@pplM8Po`M8p})M)}F }F1pploqe+M8AoqM8y})E)}F }F1oypplE8AoyE8y})E)c}F }F1p}pl}+gF}9FL9HHHHH9ff.@H:HHL9r1DH<HH9u1H<HH9uLLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI1v1Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI1v1Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LHOL LZHLRH6I9JUHHItH95I3MID$H Mo H1ILHItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oN HI}Yl$Ho5 o%M If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$o HI}Yl$Ho o% Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo o o% I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIo o o% Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo o o% Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o HI}Yl$Ho o% If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oU HI}Yl$Ho< o%T Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo oߣ o% I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIoݡ oՠ o% Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoJ oB o%Z Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o HI}Yl$Ho՚ o% If.o9E8IH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppoylu+E8QoyE8ym7E7mF mF1oypplE8QoyE8ym7E7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$o HI}Yl$Ho o% Io:E8JH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppozlu+E8RozE8zU7U7mF mF1ozpplE8RozE8zU7U7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo7 o/ o%G I@zo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlovM8vm+U8PonU8nm7zohU8hU7mF mF1ppzoplM8PE8vo~E8~m7zopM8pM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIo- o% o%= Io.U8VI IzoHU8zo o U80u7M80zo`m7o@uF uF1pplU8Pzo@U8Po`U8pu7E8pzoxm7uF uF1pponU8nlzopm+M8Pm7onU8vzohU8hU7mF mF1ppovM8vlE8Pm7ovM8~zopM8pM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo o o% Izo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlE8vzoxm+U8HonU8nu7zohU8hU7uF uF1pplE8Ho~E8vo~E8~u7zopM8pM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o> HI}Yl$Ho% o%= If.o9E8IH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppoylu+E8QoyE8yU7U7mF mF1oypplE8QoyE8yU7U7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$o HI}Yl$Ho܊ o% Io:E8JH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppozlu+E8RozE8zm7E7mF mF1ozpplE8RozE8zm7E7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo o o% I@zo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Vm7zohU8ponU8nU7mF mF1ppzopM8plE8Vm7zopM8xovM8vM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIo} ou o% Io.U8NI IzozoxHU8o u7U80zo U80m7o@uF uF1pplU8Pzo@U8Po`u7U8pzo`U8pm7uF uF1pponlE8po~m+U8VzohU8hm7onU8nU7mF mF1ppzopM8plE8Vo~m7E8vzoxE8xM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo o o% Izo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Nu7zohU8ponU8nU7uF uF1ppzopM8plE8Nu7zopM8xovM8vM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o HI}Yl$Hou o% If.o9E8IH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppoylu+E8QoyE8yU7U7mF mF1oypplE8QoyE8yU7U7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$oE~ HI}Yl$Ho,} o%D} Io:E8JH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppozlu+E8RozE8zm7E7mF mF1ozpplE8RozE8zm7E7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo{ oz o%z I@zo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Vm7zohU8ponU8nU7mF mF1ppzopM8plE8Vm7zopM8xovM8vM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIox ow o%w Io.U8NI IzozoxHU8o u7U80zo U80m7o@uF uF1pplU8Pzo@U8Po`u7U8pzo`U8pm7uF uF1pponlE8po~m+U8VzohU8hm7onU8nU7mF mF1ppzopM8plE8Vo~m7E8vzoxE8xM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo:v o2u o%Ju Izo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Nu7zohU8ponU8nU7uF uF1ppzopM8plE8Nu7zopM8xovM8vM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$or HI}Yl$Hoq o%q If.o9E8IH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppoylu+E8QoyE8ym7E7mF mF1oypplE8QoyE8ym7E7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$op HI}Yl$Ho|o o%o Io:E8JH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppozlu+E8RozE8zU7U7mF mF1ozpplE8RozE8zU7U7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo'n om o%7m I@zo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlovM8vm+U8PonU8nm7zohU8hU7mF mF1ppzoplM8PE8vo~E8~m7zopM8pM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIok oj o%-j Io.U8VI IzoHU8zo o U80u7M80zo`m7o@uF uF1pplU8Pzo@U8Po`U8pu7E8pzoxm7uF uF1pponU8nlzopm+M8Pm7onU8vzohU8hU7mF mF1ppovM8vlE8Pm7ovM8~zopM8pM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoh og o%g Izo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlE8vzoxm+U8HonU8nu7zohU8hU7uF uF1pplE8Ho~E8vo~E8~u7zopM8pM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHSHL LZHZLGHWHLItTMu IM~51ff.H9I8@HLM!HL9uH]DIVMuHuIH9+ M~HJ@H9J@H9@IBHHMoe o%d H?IHH?o-d IHD$}Yt$H@o8H E8HHo zoXE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c%8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gV}9VL9=LHHHI9t#I)J4H8HH!JH9rwTff.@HHI9XM&HK@H9JI9IBHHLorb o%ja H?HHH?o-oa HHD$}Yt$Lff.fo8H E8HHo zoPE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c-8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gQ}9QH9=LHIHI9oI)JMHLLIoX o%W o-W Mo6M8VH Ho0M8XHm)o zope)o@c 8@m)b=)e)b=)M80o M80e)M)e)M)mF mF1pplE8Po@E8Po`m)e)m)e)E8po`E8pe)E)e)E)mF mF1ppoxE8xlovE)m+M8^opM8pe)E)M)e)M)ovM8vM)M)eF eF1ppo~lE8^oxE8xe)E)e)E)o~E8~E)E)EceF eF1p}ple+gW}9WL9vLHH4HHII9wHH)HHHIH<@I<@!@4HL9|1H<@I<@!@4HI9u11af.UHHLLRLZHOHGHLItEMu IM~,1ff.@H:H 9HLLLL9uIMuIuH9H9M~J H9J @H9@IIHMH|$oT HIH}Yt$oqS o-S IfDo9E8IH Ho zoYE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}ployu+E8QoycE8AAMm)b=)=mF mF1c%8ApploQm8QAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9t%I)J HH 2HHH9rwDIPH:H9MlJH9J@H9@-IQHMH|$o%R HIH}Yt$oQ o- Q Iff.fo:E8JH Ho zoRE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}plozu+E8RozcE8BAMm)b=)=mF mF1c-8BpploRm8RAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9I)J @HH 2HHH9rDIH9dH9 MJ4NH<1H9@L9AHD H9@L9AD @oIqHaMHHIIoO o{N o-N Io7o~ I HM8o6HM8o M80E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<I9IIJE8NHo E80o E80u)o@m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppolovM8vu+E8WovM8~owM8wm)M)mF mF1ovM8vpploWm8WovcM8FowM8wm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHL9wHH)HHHHH H 0HL9|MIqHMHHIIoI oH o-H Io?ow I HE8o>HE8M80o E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHI9wHH)HHHHH H 0HL9|1HHLZLRH~21ff.I9I8@HIM1LH9u[fHLGL LZHLRH6L9t.1H~&HH9HMHLLIMH9uMuM9uHH~1@LL9ILHLH9uHff.HLGL LZHLRH6L9t.1H~&HH9HNHLLIMH9uMuM9uHH~1@LL9IOHLH9uHff.ATUSLLLGLHHZHjMII1AHxQHt{HtuLHE@HtHҨtHHuHHMIHI9tMIIHyH5@ H*H8[]A\f.H[]A\ff.AWAVAUATUSHL6L/HoLgLHzLzM~X1#@IEHHI$HMHMI9t1HMHuH|$L$bL$H|$I$H[]A\A]A^A_fHOHz1HH~f.HHHH9uff.LLJHHWH>It%H~1fDH0HLH2LH9ufIuH9tH~1fDH4H4HH9u1H~H4H4HH9ufDHLLBHLHMUL1HSIZHIHHMHIHHLHML9AHHHLMHIHH9A>H4LHOLHH~HHfofofs ffffs ffBLH9uLLHHHLHI9t HHH[]@IL9MHGI9IAH9IL11H@Ao Hfofofs ffffs fHH9uLHHIHI9t4HHHÐ1fDIHIHHLI9u[]@M~HGH9roItiL11HfAo Hfofofs ffffs fHH9uK1IHHHI9u1IHHHL9ufL LRHHWLIM~|19  ? IfDH,HLHLL9tAHHxAfH*f(^f/f(r\HLH,HL1LL9uHǃfHH H*XDIMH9M~1^8  N> IfH,HHL9tYHHx5fH*f(^f/f(r\H,HL1 HǃfHH H*XM+17  = IDH,HHL9tYHHx5fH*f(^f/f(r\H,HL1 HǃfHH H*Xff.LHLJHH6It%H~1fDHHLHLH9ufIuH9ttH~HPH9HWH9HVHI11I@oHHI9uHHHHHH9tHHHuHPH9rIHVHv?I11Io H HI9u1fDH H HH9u1H H HH9ufLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1f1If.ofoHfHI9uHHHHHH9dHHHHQHAH9rUHGHvKI1f1IofoHfHI9u1fDH4HH4HH9u1H4HH4HH9uff.LLJHHWH6It%H~1fDH8HLLH9uÐIuH9t H~1fDH< HH9u1H~fDH< HH9uDLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1fv1If.oHfHI9uHHHHHH9hHHHHUHAH9rQHGHvGI1fv1I@oHfHI9u1fH4HH4HH9u1H4HH4HH9u@LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9HIIIHIHH9uJHKIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&HHHtGHD$HL1~L$HfloHHfBH9uHHMH9IHHtLH11HoAoHfAHH9uHHHIHIH9mIHIHZHtH11HAoo$HfAHH9u1HIIHH9uff.LLOHOLLZHzH6M9ItHD$~L$11IIfl@ofoHfAHI9uHHHHIH9fH+I@I)M9I9H6I@IyI9I9 HAI9H9@ HFHH11Hf.AooHfAHH9uHHHIHIH9IH+IIH)IHH9uHJ+KIL9uHdHtLHD$IH1~L$Iflɐo"foHHfBL9uHHH H9H+HHHtGHL$HL1~L$HfloHHf@H9uHHMH9I)HHH11HAoo,HfAHH9uHeHH11HAoo4HfAHH9ui1IH+IHH9uAWAVAUATUSH/LOHLRL_HZLL9`HfHu HMAMhL1HIIHIIMLHMMHHILHLIIM9AHHIHH9@A HHHHLH9HHHLI9 AIML4L,HIO$LL1~~!H$LLfofofofs fs fffffs ffBLL9uLLHHHHHHLLI9t HHH[]A\A]A^A_fHFHIIL9M~HUI9IQH9IPHHD$~\$11LflHfofs fDoLHfofofs fffffs fAHH9uLHHHLI9HEH[]A\A]A^A_ÐHL9HuMI@HLfo, L1HH @~foHfs Hfoffofs ffffs fH9ufofofsfs fofofs fffofffs ffH~HLHHHIL9tVHPI I3I9~EH1HHHI9~4H2HHHI9~$H2HHHI9~HH2HI9~H2HuIgHUM9&MIII9IK@I9@IHHHT$~\$11LflHfofs f.Ao Hfofofs fffffs fAHH9uLHHI II9HI[]A\A]A^A_Ð1fDHUIHHIIMI9u[]A\A]A^A_IOL98M9M~HEIII9H9 ICI9I9 Ȅ+I!L11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHDI LI9f.HTHIHI9uI HI HI9u~MuIt{HT$LL1~\$Hflfofs foHHfofofs fffffs f@H9uLHMI9IIMItsHD$LH1~\$Hflfofs o HHfofofs fffffs fBH9uLHHlI9fHEHEXMOItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9IHEIMItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9:HEII*11HTIIHI9ufLLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH#IIH!IHH9uJH!KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H!HHtGHD$HL1~L$HfloHHfBH9uHHMH9I!HHtLH11HoAoHfAHH9uHHHIHIH9mHI#IHZHtH11HAoo$HfAHH9u1IH#IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH IIH IHH9uJH KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H HHtGHD$HL1~L$HfloHHfBH9uHHMH9I HHtLH11HoAoHfAHH9uHHHIHIH9mHI IHZHtH11HAoo$HfAHH9u1IH IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH3IIH1IHH9uJH1KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H1HHtGHD$HL1~L$HfloHHfBH9uHHMH9I1HHtLH11HoAoHfAHH9uHHHIHIH9mHI3IHZHtH11HAoo$HfAHH9u1IH3IHH9uff.SLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(IL$fnL$1I1f.AoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtBIL$fnL$LI1oHHf@I9uHHMH9I [1HfDH IHIHH9u[H1H IHIHH9u[ÐSLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(IL$fnL$1I1f.AoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtBIL$fnL$LI1oHHf@I9uHHMH9I([1HfDH IHIHH9u[H1H IHIHH9u[ÐLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufSL LRHZHOHWLH?ItLMu IM~.1fDH?H9AHLLD!HL9u[IMuHuHH9M~H@J<!BIM9u[HiHH9~M~H@fDJ<!B IM9u[H!H9H9M91H<@H<AD!@4HL9u[M HDJ<!BIM9u[MHJ<!BIM9u[1M@H<@H<AD!@4HL9u[M1H<@H<AD!@4HL9u[DLLJLZHGHWHLIt5MuItrM~ 1H9H :HLLLL9u@ItrMuIuHH9M~fDHJ 4BIM9uf.IuH H9t`M~DHJ 4BIM9ufITH9twH9Mb1DHHLZLRH~*1I9I8@HIM1LH9u[ÐUHAVAUATSH LHRLWHHvH]L[H1HIIIIHLIMHLHMM9AHHHLHHILH9AIILLE1ILL,I4IL$R~~'I""LL}8s s }9Pģ LM9uHHHHIHHIH9IIHIHFIH9IHIHIIH9IHIw[A\A]A^]HM9H~IB I9IA I9HCHH11Hzo,U8LHs s x}9DH H9uHHHILH9uEw[A\A]A^]1ff.IHIHIIH9u[A\A]A^]I HHHJH9}IIHHHHH9~IQHHPwHIB I9HCHH11Hzo4M8LHs s x}9DH H9uHHHILH9I HHHJH9IIHHHHH9)1IHIHH9u1IHIHH9uf.L LRHHWLIM~|1: * I%ff.,HLHLL9t9HHxAW*^/r\HL,HL1LL9uff.@HǃWHH *XDIEH9M~1v f If.,HHL9tYHHx5W*^/r\,HL1 ff.@HǃWHH *XM1  Iff.f,HHL9tYHHx5W*^/r\,HL1 ff.@HǃWHH *X@LLJHHWH>It5H1f.H0HLH2LH9uf.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH HHH9t HH HNH9~HHHHJH9wH@HBwH~HH H9rcHOHvYI11Iff.om8DH }9D H I9u[1fH4H4HH9u1H4H4HH9uf.LLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI11Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI11Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LLJHGHH>It5HS1f.H:HLLH9ufIuH9HH H9H 8@H9@HOHIHHokIo%_o-wIo9E8AH Ho E80})o@M)}F }F1pplE8Po`E8p})M)}F }F1ppoyE8yloqE)}+M8Iu)uF uF1oypplE8IoyE8yu)E)cuF uF1p}plu+gN}9NL9HHHHH9t'H)H ff.H:HHH9rwH~H L8H9@L9@HOH IHHoVIo%Jo-bIff.oe8AH Ho e80})M)}F }F1o@pplM8Po`M8p})M)}F }F1pploqe+M8AoqM8y})E)}F }F1oypplE8AoyE8y})E)c}F }F1p}pl}+gF}9FL9HHHHH9ff.@H:HHL9r1DH<HH9u1H<HH9uLLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI1v1Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI1v1Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LHOL LZHLRH6I9JUHHItH95I3MID$H MoH1ILHItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oHI}Yl$Hoo%If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oeHI}Yl$HoLo%dIo:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIooo%I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIooo%Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoZoRo%jIzo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oHI}Yl$Hoo%If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oHI}Yl$Hoo%Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIoGo?o%WI@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIo=o5o%MIo.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIooo%Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$oH}Yt$Io 8Ho%-o-EIff.o9E8QH Ho zoYE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}ploym+E8YoycE8A=e7b=7=eF eF1c%8ApploYe8Y=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$oH}Yt$Io Ho%o-̚IDo:E8RH Ho zoRE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}plozm+E8ZozcE8B=M7BM7=eF eF1c-8BpploZe8Z=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo Do|IIo%-HIo-?Iff.zo8o6I IM8^ov HE8zofc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLH9IIOLLff.fLL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo o"IIo%ӔHIo-Io>E8^I IzoHE8o E80zo m7E80o@e7mF mF1E8Pzo@pplE8Po`E8pm7zo`e8pe7mF mF1ppzoxlovM8vm+E8Xe7ovM8~zopM8pM7eF eF1ovM8vpplzoXe8Xe7ovcM8FzopM8p=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9"wIH)IILLfLL90HH9|HkHwHIo o?IIo%HIo-Izo8o6I IM8^ov HE8zonc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9FwIH)IILLLL90HH9|1LL90HH9u11fUHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$oH}Yt$Io HHo%=o-UIff.o9E8QH Ho zoYE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}ploym+E8YoycE8A=M7BM7=eF eF1c%8ApploYe8Y=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$o%H}Yt$Io όHo%ċo-܋IDo:E8RH Ho zoRE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}plozm+E8ZozcE8B=e7b=7=eF eF1c-8BpploZe8Z=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo ToIIo%=HIo-OIff.zo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLH9}IIOLLf.LL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo o2IIo%HIo-Io>E8VI Izoov HE8Azo`zo C8@m7=M80E80o@e7mF mF1pplE8Pzo@E8Po`m7E8pzo`E8pe7mF mF1ppzoxE8xlovm+M8^zopM8pe7ovM8vM7eF eF1ovpplM8^zopM8pe7ovM8vM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9%wIH)IILLff.LL90HH9|HkHwHIo oOIIo%HIo-Izo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9CwIH)IILLLL90HH9|1LL90HH9u11ff.@UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$oH}Yt$Io HHo%=o-UIff.o9E8QH Ho zoYE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}ploym+E8YoycE8A=M7BM7=eF eF1c%8ApploYe8Y=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$o%~H}Yt$Io }Ho%|o-|IDo:E8RH Ho zoRE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}plozm+E8ZozcE8B=e7b=7=eF eF1c-8BpploZe8Z=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo T{o{IIo%=zHIo-OzIff.zo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLH9}IIOLLf.LL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo wo2xIIo%vHIo-vIo>E8VI Izoov HE8Azo`zo C8@m7=M80E80o@e7mF mF1pplE8Pzo@E8Po`m7E8pzo`E8pe7mF mF1ppzoxE8xlovm+M8^zopM8pe7ovM8vM7eF eF1ovpplM8^zopM8pe7ovM8vM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9%wIH)IILLff.LL90HH9|HkHwHIo uoOuIIo%tHIo-tIzo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9CwIH)IILLLL90HH9|1LL90HH9u11ff.@UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$oqH}Yt$Io HqHo%=po-UpIff.o9E8QH Ho zoYE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}ploym+E8YoycE8A=e7b=7=eF eF1c%8ApploYe8Y=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$o%oH}Yt$Io nHo%mo-mIDo:E8RH Ho zoRE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}plozm+E8ZozcE8B=M7BM7=eF eF1c-8BpploZe8Z=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo TlolIIo%=kHIo-OkIff.zo8o6I IM8^ov HE8zofc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLH9IIOLLff.fLL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo ho2iIIo%gHIo-gIo>E8^I IzoHE8o E80zo m7E80o@e7mF mF1E8Pzo@pplE8Po`E8pm7zo`e8pe7mF mF1ppzoxlovM8vm+E8Xe7ovM8~zopM8pM7eF eF1ovM8vpplzoXe8Xe7ovcM8FzopM8p=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9"wIH)IILLfLL90HH9|HkHwHIo foOfIIo%eHIo-eIzo8o6I IM8^ov HE8zonc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9FwIH)IILLLL90HH9|1LL90HH9u11fUHSHL LZHZLGHWHLItTMu IM~51ff.H9I8@HLM!HL9uH]DIVMuHuIH9+ M~HJ@H9J@H9@IBHHMoYbo%QaH?IHH?o-VaIHD$}Yt$H@o8H E8HHo zoXE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c%8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gV}9VL9=LHHHI9t#I)J4H8HH!JH9rwTff.@HHI9XM&HK@H9JI9IBHHLo_o%^H?HHH?o-^HHD$}Yt$Lff.fo8H E8HHo zoPE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c-8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gQ}9QH9=LHIHI9oI)JMHLLIoUo%To-TMo6M8VH Ho0M8XHm)o zope)o@c 8@m)b=)e)b=)M80o M80e)M)e)M)mF mF1pplE8Po@E8Po`m)e)m)e)E8po`E8pe)E)e)E)mF mF1ppoxE8xlovE)m+M8^opM8pe)E)M)e)M)ovM8vM)M)eF eF1ppo~lE8^oxE8xe)E)e)E)o~E8~E)E)EceF eF1p}ple+gW}9WL9vLHH4HHII9wHH)HHHIH<@I<@!@4HL9|1H<@I<@!@4HI9u11af.UHHLLRLZHOHGHLItEMu IM~,1ff.@H:H 9HLLLL9uIMuIuH9H9M~J H9J @H9@IIHMH|$oQHIH}Yt$oPo-PIfDo9E8IH Ho zoYE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}ployu+E8QoycE8AAMm)b=)=mF mF1c%8ApploQm8QAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9t%I)J HH 2HHH9rwDIPH:H9MlJH9J@H9@-IQHMH|$oeOHIH}Yt$oHNo-`NIff.fo:E8JH Ho zoRE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}plozu+E8RozcE8BAMm)b=)=mF mF1c-8BpploRm8RAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9I)J @HH 2HHH9rDIH9dH9 MJ4NH<1H9@L9AHD H9@L9AD @oIqHaMHHIIoLoKo-KIo7o~ I HM8o6HM8o M80E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<I9IIJE8NHo E80o E80u)o@m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppolovM8vu+E8WovM8~owM8wm)M)mF mF1ovM8vpploWm8WovcM8FowM8wm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHL9wHH)HHHHH H 0HL9|MIqHMHHIIoFoEo-FIo?ow I HE8o>HE8M80o E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHI9wHH)HHHHH H 0HL9|1HHLZLRH~21ff.I9I8@HIM1LH9u[fHLGL LZHLRH6L9t.1H~&HH9HCHLLIMH9uMuM9uHH~1@LL9IBHLH9uHff.HLGL LZHLRH6L9t.1H~&HH9HFHLLIMH9uMuM9uHH~1@LL9IGHLH9uHff.ATUSLLLGH*HHZLZM~U1AfIHtHIHt?LHEfDHtHҨtHHuHHIILI9u[]A\HAWAVAUATUSHL6L/HoLgLHzLzM~X1#@IE1HI$HMHMI9t1HMHuH|$L$L$H|$I$H[]A\A]A^A_fHOHz1HH~f.HHHH9uff.LLJHHWH>It%H~1fDH0HLH2LH9ufIuH9tH~1fDH4H4HH9u1H~H4H4HH9ufDHLLBHLHMUL1HSIZHIHHMHIHHLHML9AHHHLMHIHH9A>H4LHOLHH~HHfofofs ffffs ffBLH9uLLHHHLHI9t HHH[]@IL9MHGI9IAH9IL11H@Ao Hfofofs ffffs fHH9uLHHIHI9t4HHHÐ1fDIHIHHLI9u[]@M~HGH9roItiL11HfAo Hfofofs ffffs fHH9uK1IHHHI9u1IHHHL9ufLLJHOHH>ItEH~8 61fDff(HH*L^H,HLH9uIuH9t:H~ `61fDff(H*^H,H4HH9u1 )6H~@ff(H*^H,H4HH9uLHLJHH6It%H~1fDHHLHLH9ufIuH9ttH~HPH9HWH9HVHI11I@oHHI9uHHHHHH9tHHHuHPH9rIHVHv?I11Io H HI9u1fDH H HH9u1H H HH9ufLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1f1If.ofoHfHI9uHHHHHH9dHHHHQHAH9rUHGHvKI1f1IofoHfHI9u1fDH4HH4HH9u1H4HH4HH9uff.LLJHHWH6It%H~1fDH8HLLH9uÐIuH9t H~1fDH< HH9u1H~fDH< HH9uDLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1fv1If.oHfHI9uHHHHHH9hHHHHUHAH9rQHGHvGI1fv1I@oHfHI9u1fH4HH4HH9u1H4HH4HH9u@LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9HIIIHIHH9uJHKIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&HHHtGHD$HL1~L$HfloHHfBH9uHHMH9IHHtLH11HoAoHfAHH9uHHHIHIH9mIHIHZHtH11HAoo$HfAHH9u1HIIHH9uff.LLOHOLLZHzH6M9ItHD$~L$11IIfl@ofoHfAHI9uHHHHIH9fH+I@I)M9I9H6I@IyI9I9 HAI9H9@ HFHH11Hf.AooHfAHH9uHHHIHIH9IH+IIH)IHH9uHJ+KIL9uHdHtLHD$IH1~L$Iflɐo"foHHfBL9uHHH H9H+HHHtGHL$HL1~L$HfloHHf@H9uHHMH9I)HHH11HAoo,HfAHH9uHeHH11HAoo4HfAHH9ui1IH+IHH9uAWAVAUATUSH/LOHLRL_HZLL9`HfHu HMAMhL1HIIHIIMLHMMHHILHLIIM9AHHIHH9@A HHHHLH9HHHLI9 AIML4L,HIO$LL1~~!H$LLfofofofs fs fffffs ffBLL9uLLHHHHHHLLI9t HHH[]A\A]A^A_fHFHIIL9M~HUI9IQH9IPHHD$~\$11LflHfofs fDoLHfofofs fffffs fAHH9uLHHHLI9HEH[]A\A]A^A_ÐHL9HuMI@HLfox+L1HH @~foHfs Hfoffofs ffffs fH9ufofofsfs fofofs fffofffs ffH~HLHHHIL9tVHPI I3I9~EH1HHHI9~4H2HHHI9~$H2HHHI9~HH2HI9~H2HuIgHUM9&MIII9IK@I9@IHHHT$~\$11LflHfofs f.Ao Hfofofs fffffs fAHH9uLHHI II9HI[]A\A]A^A_Ð1fDHUIHHIIMI9u[]A\A]A^A_IOL98M9M~HEIII9H9 ICI9I9 Ȅ+I!L11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHDI LI9f.HTHIHI9uI HI HI9u~MuIt{HT$LL1~\$Hflfofs foHHfofofs fffffs f@H9uLHMI9IIMItsHD$LH1~\$Hflfofs o HHfofofs fffffs fBH9uLHHlI9fHEHEXMOItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9IHEIMItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9:HEII*11HTIIHI9ufLLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH#IIH!IHH9uJH!KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H!HHtGHD$HL1~L$HfloHHfBH9uHHMH9I!HHtLH11HoAoHfAHH9uHHHIHIH9mHI#IHZHtH11HAoo$HfAHH9u1IH#IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH IIH IHH9uJH KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H HHtGHD$HL1~L$HfloHHfBH9uHHMH9I HHtLH11HoAoHfAHH9uHHHIHIH9mHI IHZHtH11HAoo$HfAHH9u1IH IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH3IIH1IHH9uJH1KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H1HHtGHD$HL1~L$HfloHHfBH9uHHMH9I1HHtLH11HoAoHfAHH9uHHHIHIH9mHI3IHZHtH11HAoo$HfAHH9u1IH3IHH9uff.SLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(HcI11H\$~L$IfDAoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtFHcIL1H\$~L$IoHHf@I9uHHMH9I [1HfH IHIHH9u[H1H IHIHH9u[ÐSLLOLHZHLZH6M9ItCMu IH~%1DHIHMLHIIH9u[IMuHuHM9H~f.KHKII9u[f.M^L9UIH~1@HHLHH9uI[fH2II9tpHKDJ HHKII9u[HM9txI9H1DH IHIHH9u[HDJ HHJII9u[HfDKIt5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufSL LRHZHOHWLH?ItLMu IM~.1fDH?H9AHLLD!HL9u[IMuHuHH9M~H@J<!BIM9u[HiHH9~M~H@fDJ<!B IM9u[H!H9H9M91H<@H<AD!@4HL9u[M HDJ<!BIM9u[MHJ<!BIM9u[1M@H<@H<AD!@4HL9u[M1H<@H<AD!@4HL9u[DLLJLZHGHWHLIt5MuItrM~ 1H9H :HLLLL9u@ItrMuIuHH9M~fDHJ 4BIM9uf.IuH H9t`M~DHJ 4BIM9ufITH9twH9Mb1DHHLZLRH~*1I9I8@HIM1LH9u[ÐUHAVAUATSH LHRLWHHvH]L[H1HIIIIHLIMHLHMM9AHHHLHHILH9AIILLE1ILL,I4IL$R~~'I""LL}8s s }9Pģ LM9uHHHHIHHIH9IIHIHFIH9IHIHIIH9IHIw[A\A]A^]HM9H~IB I9IA I9HCHH11Hzo,U8LHs s x}9DH H9uHHHILH9uEw[A\A]A^]1ff.IHIHIIH9u[A\A]A^]I HHHJH9}IIHHHHH9~IQHHPwHIB I9HCHH11Hzo4M8LHs s x}9DH H9uHHHILH9I HHHJH9IIHHHHH9)1IHIHH9u1IHIHH9uf.LLJHOHH>ItEH~4 1fDWH*L^,HLH9uff.IuH9t6H~ `1fDW*^,HHH9u1 -H~W*^,HHH9uff.@LLJHHWH>It5H1f.H0HLH2LH9uf.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH HHH9t HH HNH9~HHHHJH9wH@HBwH~HH H9rcHOHvYI11Iff.om8DH }9D H I9u[1fH4H4HH9u1H4H4HH9uf.LLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI11Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI11Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LLJHGHH>It5HS1f.H:HLLH9ufIuH9HH H9H 8@H9@HOHIHHoIo%o-'Io9E8AH Ho E80})o@M)}F }F1pplE8Po`E8p})M)}F }F1ppoyE8yloqE)}+M8Iu)uF uF1oypplE8IoyE8yu)E)cuF uF1p}plu+gN}9NL9HHHHH9t'H)H ff.H:HHH9rwH~H L8H9@L9@HOH IHHoIo%o-Iff.oe8AH Ho e80})M)}F }F1o@pplM8Po`M8p})M)}F }F1pploqe+M8AoqM8y})E)}F }F1oypplE8AoyE8y})E)c}F }F1p}pl}+gF}9FL9HHHHH9ff.@H:HHL9r1DH<HH9u1H<HH9uLLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI1v1Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI1v1Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LHOL LZHLRH6I9JUHHItH95I3MID$H MoH1ILHItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oHI}Yl$Hoſo%ݿIf.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oHI}Yl$Ho|o%Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIo'oo%7I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIooo%-Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIooo%Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o.HI}Yl$Hoo%-If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oHI}Yl$Ho̯o%Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIowooo%I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIomoeo%}Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoڨoҧo%Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o~HI}Yl$Hoeo%}If.o9E8IH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppoylu+E8QoyE8ym7E7mF mF1oypplE8QoyE8ym7E7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$o5HI}Yl$Hoo%4Io:E8JH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppozlu+E8RozE8zU7U7mF mF1ozpplE8RozE8zU7U7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIoǠoo%ןI@zo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlovM8vm+U8PonU8nm7zohU8hU7mF mF1ppzoplM8PE8vo~E8~m7zopM8pM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIooo%͜Io.U8VI IzoHU8zo o U80u7M80zo`m7o@uF uF1pplU8Pzo@U8Po`U8pu7E8pzoxm7uF uF1pponU8nlzopm+M8Pm7onU8vzohU8hU7mF mF1ppovM8vlE8Pm7ovM8~zopM8pM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo*o"o%:Izo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlE8vzoxm+U8HonU8nu7zohU8hU7uF uF1pplE8Ho~E8vo~E8~u7zopM8pM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oΗHI}Yl$Hoo%͖If.o9E8IH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppoylu+E8QoyE8yU7U7mF mF1oypplE8QoyE8yU7U7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$oHI}Yl$Holo%Io:E8JH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppozlu+E8RozE8zm7E7mF mF1ozpplE8RozE8zm7E7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIooo%'I@zo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Vm7zohU8ponU8nU7mF mF1ppzopM8plE8Vm7zopM8xovM8vM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIo oo%Io.U8NI IzozoxHU8o u7U80zo U80m7o@uF uF1pplU8Pzo@U8Po`u7U8pzo`U8pm7uF uF1pponlE8po~m+U8VzohU8hm7onU8nU7mF mF1ppzopM8plE8Vo~m7E8vzoxE8xM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIozoro%Izo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Nu7zohU8ponU8nU7uF uF1ppzopM8plE8Nu7zopM8xovM8vM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oHI}Yl$Hoo%If.o9E8IH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppoylu+E8QoyE8yU7U7mF mF1oypplE8QoyE8yU7U7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$oՇHI}Yl$Hoo%ԆIo:E8JH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppozlu+E8RozE8zm7E7mF mF1ozpplE8RozE8zm7E7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIogo_o%wI@zo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Vm7zohU8ponU8nU7mF mF1ppzopM8plE8Vm7zopM8xovM8vM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIo]oUo%mIo.U8NI IzozoxHU8o u7U80zo U80m7o@uF uF1pplU8Pzo@U8Po`u7U8pzo`U8pm7uF uF1pponlE8po~m+U8VzohU8hm7onU8nU7mF mF1ppzopM8plE8Vo~m7E8vzoxE8xM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoo~o%~Izo(U8PI Io.U8NHo o`zo u7U80M80m7zo@uF uF1pplU8Po@U8Pzo`U8pu7E8po~m7uF uF1ppzohU8hlovm+M8Nu7zohU8ponU8nU7uF uF1ppzopM8plE8Nu7zopM8xovM8vM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$on|HI}Yl$HoU{o%m{If.o9E8IH Ho E80u7o@M7uF uF1pplE8Po`E8pu7M7uF uF1ppoylu+E8QoyE8ym7E7mF mF1oypplE8QoyE8ym7E7cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L;HHH9rwIpL H9BHHH9H8@H9@HWHILL$o%zHI}Yl$Ho yo%$yIo:E8JH Ho E80U7o@U7uF uF1pplE8Po`E8pU7U7uF uF1ppozlu+E8RozE8zU7U7mF mF1ozpplE8RozE8zU7U7cmF mF1p}plm+gV}9VL9HHHHH9H)H L; HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIowovo%vI@zo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlovM8vm+U8PonU8nm7zohU8hU7mF mF1ppzoplM8PE8vo~E8~m7zopM8pM7mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N; BIL9ujN;BIL9uSHJff.@N; BII9uHN;BII9uHHwH#IIHIIotoso%sIo.U8VI IzoHU8zo o U80u7M80zo`m7o@uF uF1pplU8Pzo@U8Po`U8pu7E8pzoxm7uF uF1pponU8nlzopm+M8Pm7onU8vzohU8hU7mF mF1ppovM8vlE8Pm7ovM8~zopM8pM7mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIoroqo%*qIzo(U8HI Io.U8VHzo o~u7U80o U80m7zo@uF uF1pplU8Po@U8Pzo`u7U8po`U8pm7uF uF1ppzohlE8vzoxm+U8HonU8nu7zohU8hU7uF uF1pplE8Ho~E8vo~E8~u7zopM8pM7uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHSHL LZHZLGHWHLItTMu IM~51ff.H9I8@HLM!HL9uH]DIVMuHuIH9+ M~HJ@H9J@H9@IBHHMono%mH?IHH?o-mIHD$}Yt$H@o8H E8HHo zoXE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c%8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gV}9VL9=LHHHI9t#I)J4H8HH!JH9rwTff.@HHI9XM&HK@H9JI9IBHHLolo%jH?HHH?o-jHHD$}Yt$Lff.fo8H E8HHo zoPE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c-8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gQ}9QH9=LHIHI9oI)JMHLLIo+bo%ao-7aMo6M8VH Ho0M8XHm)o zope)o@c 8@m)b=)e)b=)M80o M80e)M)e)M)mF mF1pplE8Po@E8Po`m)e)m)e)E8po`E8pe)E)e)E)mF mF1ppoxE8xlovE)m+M8^opM8pe)E)M)e)M)ovM8vM)M)eF eF1ppo~lE8^oxE8xe)E)e)E)o~E8~E)E)EceF eF1p}ple+gW}9WL9vLHH4HHII9wHH)HHHIH<@I<@!@4HL9|1H<@I<@!@4HI9u11af.UHHLLRLZHOHGHLItEMu IM~,1ff.@H:H 9HLLLL9uIMuIuH9H9M~J H9J @H9@IIHMH|$o^HIH}Yt$o]o-]IfDo9E8IH Ho zoYE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}ployu+E8QoycE8AAMm)b=)=mF mF1c%8ApploQm8QAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9t%I)J HH 2HHH9rwDIPH:H9MlJH9J@H9@-IQHMH|$o[HIH}Yt$oZo-ZIff.fo:E8JH Ho zoRE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}plozu+E8RozcE8BAMm)b=)=mF mF1c-8BpploRm8RAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9I)J @HH 2HHH9rDIH9dH9 MJ4NH<1H9@L9AHD H9@L9AD @oIqHaMHHIIoYo Xo-#XIo7o~ I HM8o6HM8o M80E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<I9IIJE8NHo E80o E80u)o@m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppolovM8vu+E8WovM8~owM8wm)M)mF mF1ovM8vpploWm8WovcM8FowM8wm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHL9wHH)HHHHH H 0HL9|MIqHMHHIIoJSo>Ro-VRIo?ow I HE8o>HE8M80o E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHI9wHH)HHHHH H 0HL9|1HHLZLRH~21ff.I9I8@HIM1LH9u[fHLGL LZHLRH6L9t.1H~&HH9HMHLLIMH9uMuM9uHH~1@LL9ILHLH9uHff.HLGL LZHLRH6L9t.1H~&HH9HNHLLIMH9uMuM9uHH~1@LL9IOHLH9uHff.ATUSLLLGLHHZHjMII1AHxQHt{HtuLHE@HtHҨtHHuHHMIHI9tMIIHy]H5JH-(H8[]A\zf.H[]A\ff.AWAVAUATUSHL6L/HoLgLHzLzM~X1#@IEHHI$HMHMI9t1HMHuH|$L$ L$H|$I$H[]A\A]A^A_fHOHz1HH~f.HHHH9uff.LLJHHWH>It%H~1fDH0HLH2LH9ufIuH9tH~1fDH4H4HH9u1H~H4H4HH9ufDHLLBHLHMUL1HSIZHIHHMHIHHLHML9AHHHLMHIHH9A>H4LHOLHH~HHfofofs ffffs ffBLH9uLLHHHLHI9t HHH[]@IL9MHGI9IAH9IL11H@Ao Hfofofs ffffs fHH9uLHHIHI9t4HHHÐ1fDIHIHHLI9u[]@M~HGH9roItiL11HfAo Hfofofs ffffs fHH9uK1IHHHI9u1IHHHL9ufL LRHHWLIM~|1B HIfDH,HLHLL9tAHHxAfH*f(^f/f(r\HLH,HL1LL9uHǃfHH H*XDIMH9M~1A GIfH,HHL9tYHHx5fH*f(^f/f(r\H,HL1 HǃfHH H*XM+1YA IGIDH,HHL9tYHHx5fH*f(^f/f(r\H,HL1 HǃfHH H*Xff.LHLJHH6It%H~1fDHHLHLH9ufIuH9ttH~HPH9HWH9HVHI11I@oHHI9uHHHHHH9tHHHuHPH9rIHVHv?I11Io H HI9u1fDH H HH9u1H H HH9ufLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1f1If.ofoHfHI9uHHHHHH9dHHHHQHAH9rUHGHvKI1f1IofoHfHI9u1fDH4HH4HH9u1H4HH4HH9uff.LLJHHWH6It%H~1fDH8HLLH9uÐIuH9t H~1fDH< HH9u1H~fDH< HH9uDLLJHOHH>It-H~ 1fDHHLHHLH9uIuH9H~HAH9HB@H9@HGHI1fv1If.oHfHI9uHHHHHH9hHHHHUHAH9rQHGHvGI1fv1I@oHfHI9u1fH4HH4HH9u1H4HH4HH9u@LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9HIIIHIHH9uJHKIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&HHHtGHD$HL1~L$HfloHHfBH9uHHMH9IHHtLH11HoAoHfAHH9uHHHIHIH9mIHIHZHtH11HAoo$HfAHH9u1HIIHH9uff.LLOHOLLZHzH6M9ItHD$~L$11IIfl@ofoHfAHI9uHHHHIH9fH+I@I)M9I9H6I@IyI9I9 HAI9H9@ HFHH11Hf.AooHfAHH9uHHHIHIH9IH+IIH)IHH9uHJ+KIL9uHdHtLHD$IH1~L$Iflɐo"foHHfBL9uHHH H9H+HHHtGHL$HL1~L$HfloHHf@H9uHHMH9I)HHH11HAoo,HfAHH9uHeHH11HAoo4HfAHH9ui1IH+IHH9uAWAVAUATUSH/LOHLRL_HZLL9`HfHu HMAMhL1HIIHIIMLHMMHHILHLIIM9AHHIHH9@A HHHHLH9HHHLI9 AIML4L,HIO$LL1~~!H$LLfofofofs fs fffffs ffBLL9uLLHHHHHHLLI9t HHH[]A\A]A^A_fHFHIIL9M~HUI9IQH9IPHHD$~\$11LflHfofs fDoLHfofofs fffffs fAHH9uLHHHLI9HEH[]A\A]A^A_ÐHL9HuMI@HLfoH6L1HH @~foHfs Hfoffofs ffffs fH9ufofofsfs fofofs fffofffs ffH~HLHHHIL9tVHPI I3I9~EH1HHHI9~4H2HHHI9~$H2HHHI9~HH2HI9~H2HuIgHUM9&MIII9IK@I9@IHHHT$~\$11LflHfofs f.Ao Hfofofs fffffs fAHH9uLHHI II9HI[]A\A]A^A_Ð1fDHUIHHIIMI9u[]A\A]A^A_IOL98M9M~HEIII9H9 ICI9I9 Ȅ+I!L11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHDI LI9f.HTHIHI9uI HI HI9u~MuIt{HT$LL1~\$Hflfofs foHHfofofs fffffs f@H9uLHMI9IIMItsHD$LH1~\$Hflfofs o HHfofofs fffffs fBH9uLHHlI9fHEHEXMOItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9IHEIMItxL11Ho\Ao$Hfofofofs fs fffffs fAHH9uLHHHIII9:HEII*11HTIIHI9ufLLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH#IIH!IHH9uJH!KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H!HHtGHD$HL1~L$HfloHHfBH9uHHMH9I!HHtLH11HoAoHfAHH9uHHHIHIH9mHI#IHZHtH11HAoo$HfAHH9u1IH#IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH IIH IHH9uJH KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H HHtGHD$HL1~L$HfloHHfBH9uHHMH9I HHtLH11HoAoHfAHH9uHHHIHIH9mHI IHZHtH11HAoo$HfAHH9u1IH IHH9uff.LLOHOLLZHzH6M9ItI@IyI9I9 HAI9H9@ HFHH11HfAooHfAHH9uHHHIHIH9IH3IIH1IHH9uJH1KIL9uHtHtHHD$IH1~L$IflɐoHHfBL9uHHH H9&H1HHtGHD$HL1~L$HfloHHfBH9uHHMH9I1HHtLH11HoAoHfAHH9uHHHIHIH9mHI3IHZHtH11HAoo$HfAHH9u1IH3IHH9uff.SLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(IL$fnL$1I1f.AoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtBIL$fnL$LI1oHHf@I9uHHMH9I [1HfDH IHIHH9u[H1H IHIHH9u[ÐSLLOLHZHLZH6M9ItCMu I$H~%1DHIHMLHIIH9u[I&MuHuHM9H~IAI9I@I96HFH(IL$fnL$1I1f.AoHfAHI9uHHHIIH9LIHI[ML9IH~1@HHLHH9uI[ÐHII9HJ HHKII9u[HM9I9H1fH IHIHH9u[K؉HKII9uaHXfJ HHJII9u[H4HtBIL$fnL$LI1oHHf@I9uHHMH9I([1HfDH IHIHH9u[H1H IHIHH9u[ÐLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ9BII9uDIuH H9t`H~DJ9 BII9uDI\H9tlH9Hj1DLL90HH9uHDJ9 BII9uH'@J9BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufLLJLRHGHWHH>It5MuItjH~ 1LL9HLLLH9u@ItjMuIuHH9H~fDJ;BII9uDIuH H9t`H~DJ; BII9uDI\H9tlH9Hj1DLL90HH9uHDJ; BII9uH'@J;BII9u1HfLL90HH9uH1LL90HH9ufSL LRHZHOHWLH?ItLMu IM~.1fDH?H9AHLLD!HL9u[IMuHuHH9M~H@J<!BIM9u[HiHH9~M~H@fDJ<!B IM9u[H!H9H9M91H<@H<AD!@4HL9u[M HDJ<!BIM9u[MHJ<!BIM9u[1M@H<@H<AD!@4HL9u[M1H<@H<AD!@4HL9u[DLLJLZHGHWHLIt5MuItrM~ 1H9H :HLLLL9u@ItrMuIuHH9M~fDHJ 4BIM9uf.IuH H9t`M~DHJ 4BIM9ufITH9twH9Mb1DHHLZLRH~*1I9I8@HIM1LH9u[ÐUHAVAUATSH LHRLWHHvH]L[H1HIIIIHLIMHLHMM9AHHHLHHILH9AIILLE1ILL,I4IL$R~~'I""LL}8s s }9Pģ LM9uHHHHIHHIH9IIHIHFIH9IHIHIIH9IHIw[A\A]A^]HM9H~IB I9IA I9HCHH11Hzo,U8LHs s x}9DH H9uHHHILH9uEw[A\A]A^]1ff.IHIHIIH9u[A\A]A^]I HHHJH9}IIHHHHH9~IQHHPwHIB I9HCHH11Hzo4M8LHs s x}9DH H9uHHHILH9I HHHJH9IIHHHHH9)1IHIHH9u1IHIHH9uf.L LRHHWLIM~|1 I%ff.,HLHLL9t9HHxAW*^/r\HL,HL1LL9uff.@HǃWHH *XDIEH9M~1 If.,HHL9tYHHx5W*^/r\,HL1 ff.@HǃWHH *XM1i Y Iff.f,HHL9tYHHx5W*^/r\,HL1 ff.@HǃWHH *X@LLJHHWH>It5H1f.H0HLH2LH9uf.IuH9HHH H9HJ @H9@HOHI11Io u8DH }9D H I9uHHH HHH9t HH HNH9~HHHHJH9wH@HBwH~HH H9rcHOHvYI11Iff.om8DH }9D H I9u[1fH4H4HH9u1H4H4HH9uf.LLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI11Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI11Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LLJHGHH>It5HS1f.H:HLLH9ufIuH9HH H9H 8@H9@HOHIHHoIo%o-Io9E8AH Ho E80})o@M)}F }F1pplE8Po`E8p})M)}F }F1ppoyE8yloqE)}+M8Iu)uF uF1oypplE8IoyE8yu)E)cuF uF1p}plu+gN}9NL9HHHHH9t'H)H ff.H:HHH9rwH~H L8H9@L9@HOH IHHoIo%o-Iff.oe8AH Ho e80})M)}F }F1o@pplM8Po`M8p})M)}F }F1pploqe+M8AoqM8y})E)}F }F1oypplE8AoyE8y})E)c}F }F1p}pl}+gF}9FL9HHHHH9ff.@H:HHL9r1DH<HH9u1H<HH9uLLJHOHH>It5H1f.HHLHHLH9uIuH9HHA H9HB @H9@VHGHHI1v1Iff.fom8DH}9DH I9uHHHHHH9uwH HHHNH9~HJHHHHH9~HRHHPwH~HA H9HGHI1v1Ioe8DH}9DH I9uHHHHHH9LH HHHNH96HJHHHHH9H1fH4HH4HH9u1H4HH4HH9u@LHOL LZHLRH6I9JUHHItH95I3MID$H MoH1ILHItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$o>HI}Yl$Ho%o%=If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oHI}Yl$Hoܿo%Io:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIooo%I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIo}ouo%Io.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIooo%Izo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9H~H H9H 8@H9@MHOH?ILD$oHI}Yl$Houo%If.o9E8IH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppoylu+E8QoyE8ym)E)mF mF1oypplE8QoyE8ym)E)cmF mF1p}plm+gV}9VL9HHHHH9t&H)H ff.L9HHH9rwIpL H9BHHH9H8@H9@HWHILL$oEHI}Yl$Ho,o%DIo:E8JH Ho E80u)o@M)uF uF1pplE8Po`E8pu)M)uF uF1ppozlu+E8RozE8zm)E)mF mF1ozpplE8RozE8zm)E)cmF mF1p}plm+gV}9VL9HHHHH9H)H L9 HHH9rI0H9QH9HFH4L 8L1L9AL9AHE H9@L9AD AHwHIIHIIoװoϯo%I@zo(U8HI Io.U8VHzo o~u)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8PonU8nm)zohU8hU)mF mF1ppzoplM8PE8vo~E8~m)zopM8pM)mF mF1pplm+gxI}9IM9HHLH9IIOLLff.LL90HH9N9 BIL9ujN9BIL9uSHJff.@N9 BII9uHN9BII9uHHwH#IIHIIoͭoŬo%ݬIo.U8NI IzozoxHU8o u)U80zo U80m)o@uF uF1pplU8Pzo@U8Po`u)U8pzo`U8pm)uF uF1pponlzopM8pm+U8VzohU8hm)onU8nU)mF mF1ppovlM8VE8pzoxE8xm)ovM8vM)mF mF1pplm+gxI}9IM9HHLHLLH9wIH)IILLfLL90HH9|HkHwHIIHIIo:o2o%JIzo(U8HI Io.U8VHzo zoxu)U80o U80m)zo@uF uF1pplU8Po@U8Pzo`u)U8po`U8pm)uF uF1ppzohlovM8vm+U8HonU8nu)zohU8hU)uF uF1ppovM8vlE8Hzoxu)E8po~E8~M)uF uF1pplu+gxI}9IM9HHLHLLH9_wIH)IILLLL90HH9|1LL90HH9u11&ff.UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$oH}Yt$Io ȧHo%o-զIff.o9E8QH Ho zoYE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}ploym+E8YoycE8A=e7b=7=eF eF1c%8ApploYe8Y=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$oH}Yt$Io OHo%Do-\IDo:E8RH Ho zoRE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}plozm+E8ZozcE8B=M7BM7=eF eF1c-8BpploZe8Z=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo Ԣo IIo%HIo-ϡIff.zo8o6I IM8^ov HE8zofc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLH9IIOLLff.fLL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo zoIIo%cHIo-uIo>E8^I IzoHE8o E80zo m7E80o@e7mF mF1E8Pzo@pplE8Po`E8pm7zo`e8pe7mF mF1ppzoxlovM8vm+E8Xe7ovM8~zopM8pM7eF eF1ovM8vpplzoXe8Xe7ovcM8FzopM8p=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9"wIH)IILLfLL90HH9|HkHwHIo oϜIIo%HIo-Izo8o6I IM8^ov HE8zonc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9FwIH)IILLLL90HH9|1LL90HH9u11fUHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$o.H}Yt$Io ؘHo%͗o-Iff.o9E8QH Ho zoYE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}ploym+E8YoycE8A=M7BM7=eF eF1c%8ApploYe8Y=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$oH}Yt$Io _Ho%To-lIDo:E8RH Ho zoRE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}plozm+E8ZozcE8B=e7b=7=eF eF1c-8BpploZe8Z=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo oIIo%͒HIo-ߒIff.zo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLH9}IIOLLf.LL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo oIIo%sHIo-Io>E8VI Izoov HE8Azo`zo C8@m7=M80E80o@e7mF mF1pplE8Pzo@E8Po`m7E8pzo`E8pe7mF mF1ppzoxE8xlovm+M8^zopM8pe7ovM8vM7eF eF1ovpplM8^zopM8pe7ovM8vM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9%wIH)IILLff.LL90HH9|HkHwHIo oߍIIo%HIo-Izo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9CwIH)IILLLL90HH9|1LL90HH9u11ff.@UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$o.H}Yt$Io ؉Ho%͈o-Iff.o9E8QH Ho zoYE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}ploym+E8YoycE8A=M7BM7=eF eF1c%8ApploYe8Y=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$oH}Yt$Io _Ho%To-lIDo:E8RH Ho zoRE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}plozm+E8ZozcE8B=e7b=7=eF eF1c-8BpploZe8Z=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo oIIo%̓HIo-߃Iff.zo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLH9}IIOLLf.LL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo oIIo%sHIo-Io>E8VI Izoov HE8Azo`zo C8@m7=M80E80o@e7mF mF1pplE8Pzo@E8Po`m7E8pzo`E8pe7mF mF1ppzoxE8xlovm+M8^zopM8pe7ovM8vM7eF eF1ovpplM8^zopM8pe7ovM8vM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9%wIH)IILLff.LL90HH9|HkHwHIo ~o~IIo%}HIo-}Izo8o6I IM8VHE8zo E80o m7E80zo@e7mF mF1E8Po@pplE8Pzo`E8pm7o`e8pe7mF mF1ppo~lzopM8pm+E8^e7zopM8xovM8vM7eF eF1zopM8ppplo^e8^e7zopCM8@ovM8v=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9CwIH)IILLLL90HH9|1LL90HH9u11ff.@UHHLLJLRHOHGHH>ItEMu IH~,1ff.@LL9HLLLH9uIMuIuLH9cH~H H9H 8@H9@HOHILD$o.{H}Yt$Io zHo%yo-yIff.o9E8QH Ho zoYE80m7e7mF mF1o`e8ppplo@m8Pe7m7cmF mF1p}ploym+E8YoycE8A=e7b=7=eF eF1c%8ApploYe8Y=b=7e7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9t$H)H f.L;HHH9rwI@L H9H\HH9H8@H9@mHWH_ILL$oxH}Yt$Io _xHo%Two-lwIDo:E8RH Ho zoRE80M7M7mF mF1o`e8ppplo@m8PM7M7cmF mF1p}plozm+E8ZozcE8B=M7BM7=eF eF1c-8BpploZe8Z=BM7M7=CeF eF1pA}p=l]e+g^}9^L9dHHHHH9H)H fDL; HHH9rIH9H9{HH4L 8L1L9AL9AHE H9@L9AD A HwHIo uovIIo%tHIo-tIff.zo8o6I IM8^ov HE8zofc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLH9IIOLLff.fLL90HH9IN; BIL9uN;BIL9uHff.@N; BII9uHnN;BII9uHNHwHIo rorIIo%sqHIo-qIo>E8^I IzoHE8o E80zo m7E80o@e7mF mF1E8Pzo@pplE8Po`E8pm7zo`e8pe7mF mF1ppzoxlovM8vm+E8Xe7ovM8~zopM8pM7eF eF1ovM8vpplzoXe8Xe7ovcM8FzopM8p=M7ceF eF1p}ple+gxQ}9QM9HHLHLLH9"wIH)IILLfLL90HH9|HkHwHIo oooIIo%nHIo-nIzo8o6I IM8^ov HE8zonc8Fzo M80m7=E80zo@e7mF mF1pplE8Po@E8Pzo`m7E8po`E8pe7mF mF1ppo~E8~lzopm+M8XovM8ve7zopM8pM7eF eF1zoppplM8XovM8ve7zopM8pM7ceF eF1p}ple+gxQ}9QM9HHLHLLH9FwIH)IILLLL90HH9|1LL90HH9u11fUHSHL LZHZLGHWHLItTMu IM~51ff.H9I8@HLM!HL9uH]DIVMuHuIH9+ M~HJ@H9J@H9@IBHHMoko%jH?IHH?o-jIHD$}Yt$H@o8H E8HHo zoXE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c%8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gV}9VL9=LHHHI9t#I)J4H8HH!JH9rwTff.@HHI9XM&HK@H9JI9IBHHLoBio%:hH?HHH?o-?hHHD$}Yt$Lff.fo8H E8HHo zoPE80u)m)u)m)uF uF1o`m8ppplo@m)u8Pu)m)u)cuF uF1p}ploxu+E8PoxcE8@m)b=)m)b=)==mF mF1c-8@pploPm8Pb=)m)b=)m)==CmF mF1pA}p=l]m+gQ}9QH9=LHIHI9oI)JMHLLIok_o%_^o-w^Mo6M8VH Ho0M8XHm)o zope)o@c 8@m)b=)e)b=)M80o M80e)M)e)M)mF mF1pplE8Po@E8Po`m)e)m)e)E8po`E8pe)E)e)E)mF mF1ppoxE8xlovE)m+M8^opM8pe)E)M)e)M)ovM8vM)M)eF eF1ppo~lE8^oxE8xe)E)e)E)o~E8~E)E)EceF eF1p}ple+gW}9WL9vLHH4HHII9wHH)HHHIH<@I<@!@4HL9|1H<@I<@!@4HI9u11af.UHHLLRLZHOHGHLItEMu IM~,1ff.@H:H 9HLLLL9uIMuIuH9H9M~J H9J @H9@IIHMH|$o^[HIH}Yt$oAZo-YZIfDo9E8IH Ho zoYE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}ployu+E8QoycE8AAMm)b=)=mF mF1c%8ApploQm8QAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9t%I)J HH 2HHH9rwDIPH:H9MlJH9J@H9@-IQHMH|$oXHIH}Yt$oWo-WIff.fo:E8JH Ho zoRE80u)m)uF uF1o`m8ppplo@u8Pm)u)cuF uF1p}plozu+E8RozcE8BAMm)b=)=mF mF1c-8BpploRm8RAMb=)m)=CmF mF1pA}p=lem+gV}9VL9bLHHHI9I)J @HH 2HHH9rDIH9dH9 MJ4NH<1H9@L9AHD H9@L9AD @oIqHaMHHIIoWVoKUo-cUIo7o~ I HM8o6HM8o M80E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<I9IIJE8NHo E80o E80u)o@m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppolovM8vu+E8WovM8~owM8wm)M)mF mF1ovM8vpploWm8WovcM8FowM8wm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHL9wHH)HHHHH H 0HL9|MIqHMHHIIoPo~Oo-OIo?ow I HE8o>HE8M80o E80o@u)m)uF uF1E8Po@pplE8Po`E8po`m8pu)m)uF uF1ppo~lowM8wu+E8VowM8ovM8vm)M)mF mF1owM8wpploVm8VowcM8GovM8vm)MM)cmF mF1p}plm+gxH}9HM9LHH<HHHI9wHH)HHHHH H 0HL9|1HHLZLRH~21ff.I9I8@HIM1LH9u[fHLGL LZHLRH6L9t.1H~&HH9HCHLLIMH9uMuM9uHH~1@LL9IBHLH9uHff.HLGL LZHLRH6L9t.1H~&HH9HFHLLIMH9uMuM9uHH~1@LL9IGHLH9uHff.ATUSLLLGH*HHZLZM~U1AfIHtHIHt?LHEfDHtHҨtHHuHHIILI9u[]A\HAWAVAUATUSHL6L/HoLgLHzLzM~X1#@IE1HI$HMHMI9t1HMHuH|$L$L$H|$I$H[]A\A]A^A_fL LRHOHLIt5M~%1fDHLʉ1)LL9uf.IuH9M~HBH9HA@H9@9I@H+Lff1foHHofofofdfof`fhfefofafifofofrfrfffffofafifofifafofefafoffafifofofrfrfffffofafifofifafaffgHH9&LHHHI921)@1HpI9r1)@qHpI9kr1)@qHpI9Mr1)@qHpI9/r1)@qHpI9r1)@qHpI9r1)@qHpI9r1)@qHpI9r1)@qHp I9r 1)@q Hp I9{r 1)@q Hp I9]r 1)@q Hp I9?r 1)@q Hp I9!r H1)@q I9B1)ЈAMHBH9uI@HgLff1fo8EH@ofofofdfof`fhfefofafifofofrfrfffffofafifofifafofefafoffafifofofrfrfffffofafifofifafaffgHH9&LHHHI921)@1HpL9r1)@qHpL9 121)1HI9u121)1HL9uf.LHLJHH6ItEH~1fD8~HLLH9uHLوLH9ufIuH9H~HPH9HWH9HVHHfo%C1fHDofofoftffofdfffHH9uHHHH H958@9HzH9x@@yHzH9x@@yHzH9x@@yHzH9x@@yHzH9x@@yHzH9mx@@yHzH9Kx@@yHzH9)x@@yHz H9x @@y Hz H9x @@y Hz H9x @@y Hz H9x @@y Hz H9x @H@y H9]xA@H6HPH9PHVHBHfo%@1fHofofoftffofdfffHH9uHHHH H98@@9HzH9x@@yHzH9kx@@yHzH9Ix@@yHzH9'x@@yHzH9v1<~HH9uو HH9u1Ҁ<~HH9uو HH9uYAWAVAUATUSHHBH.L/LLgL2H$HBHD$H~w1"kA$HML<$Ld$H9tQAtAu@ut@DəA@@Ƅ@8ttA$A$fH[]A\A]A^A_ÐAWAVAUATUSHL6L/HoLgLHzLzM~p1>@AEDɉƙA@@Ƅ@8uuTA$HMHMI9t.MuH|$L$hA$L$H|$H[]A\A]A^A_ÐA$AWAVAUATUSH(HHL7LoLgHoH$HBHD$HBHD$HBHD$H~uE1*A$EIL4$Ll$Ld$Hl$L9tFAMtA6@ut@DٙA@AÄ@A8uuA$UH([]A\A]A^A_ÐA$E|ff.L LRHOHLIt5M~&1fDHLʉ1)fLL9ufIuH9M~HBH9HA@H9@WI@HIL1fHHo fofefofafifofofrfrfffffofafifofifafaHH9uLHH4HHI9 21)f1HpI9r1)fqHpI9r1)fqHpI9r1)fqHpI9r1)fqHpI9r H1)fq I9nB 1)fA MWHBH9I@HL1fHHDo fofefofafifofofrfrfffffofafifofifafaHH9uLHH4HHI921)f1HpL9r1)fqHpL91Dr1)fqHI9u1r1)fqHL9uLLJHHWH>ItUH~%1fDf8~"HLf2LH9uf.@HL@f2LH9uIuH9H~HHH9HJ@H9@HOHHfo81fHHofofofuffofefff HH9uHHH4 HHH9 f8f2HqH9fx @@frHqH9fx @@frHqH9fx @@frHqH9fx @@frHqH9efx  @@Hfr H9>fx ufB @@ HHHH9HOHHfoV71fHHofofofuffofefff HH9uHHH4 HHH9f8 @@f2HqH9[fx @@frHqH94fx @@frHqH9 fx @@frHqH9fx @@frHqH9Z1f.fItMH~#1fD0~HLLH9u@@HL@މ2LH9u@IuH9 H~HHH9HJ@H9@wHOHiIfo]011IfɐofofoHfvffofffff HI9uHHH HHH9&DE~C HNH9 DPE~0HJH9DHEBHHHH9HOHIfo`/11If@ofofoHfvffofffff HI9uX1DDE~HH9u@@މ4HH9u1ɋ4~HH9u@@މ4HH9ufDAWAVAUATUSHHBH.L/LLgL2H$HBHD$H~w1%A$HML<$Ld$H9tNAtAuutƉ@ƅ@8tt A$@A$f.H[]A\A]A^A_ÐAWAVAUATUSHL6L/HoLgLHzLzM~h17@Au@ƅ@8uu[A$HMHMI9t-MuH|$L$L$H|$A$DH[]A\A]A^A_fA $AWAVAUATUSH(HHL7LoLgHoH$HBHD$HBHD$HBHD$H~uE10 A$EIL4$Ll$Ld$Hl$L9t@AMtA6utAÅ@A8uuA$UDH([]A\A]A^A_ÐA$MfL LRLHHIt5M~*1fDHH HLH?H1H)HLL9uDIuH9t-M~1fDH H4H?H1H)H4HL9u1M~H H4H?H1H)H4HL9uLLJHHWH>ItUH~$1fDH8~HHLLH9u@HL@HH2LH9uf.IuH9tFH~1fDH<~HHH9u@@HH4HH9u1Hx@H<~HHH9u@@HH4HH9uAWAVAUATUSHHBHL'HoLwL*H$HBHD$H~E1#f{IIMH,$Lt$L9tWHMHtHI4$H9uHtHHHH@H@8tHtHIDIH[]A\A]A^A_fAWAVAUATUSHL6L/HoLgLHzLzM~p1=@IuHHHH@H@8uHuUI$HMHMI9t/HMHuH|$L$hL$H|$I$DH[]A\A]A^A_ÐHI $AWAVAUATUSH(HHL7LoLgHoH$HBHD$HBHD$HBHD$HLHILE1IH;f.I$IEIH$Hl$Ld$Ll$M9tOHMHtHLI9uHtLHHMAHAE8uHuI$IU@H([]A\A]A^A_ÐHHI$IMqff.L LRLHHIt5M~*1fDHH HLH?H1H)HLL9uDIuH9t-M~1fDH H4H?H1H)H4HL9u1M~H H4H?H1H)H4HL9uLLJHHWH>ItUH~$1fDH8~HHLLH9u@HL@HH2LH9uf.IuH9tFH~1fDH<~HHH9u@@HH4HH9u1Hx@H<~HHH9u@@HH4HH9uAWAVAUATUSHHBHL'HoLwL*H$HBHD$H~E1#f IIMH,$Lt$L9tWHMHtHI4$H9uHtHHHH@H@8tHtHIDIH[]A\A]A^A_fAWAVAUATUSHL6L/HoLgLHzLzM~p1=@IuHHHH@H@8uHuUI$HMHMI9t/HMHuH|$L$L$H|$I$DH[]A\A]A^A_ÐHI $AWAVAUATUSH(HHL7LoLgHoH$HBHD$HBHD$HBHD$HLHILE1IH;f.KI$IEIH$Hl$Ld$Ll$M9tOHMHtHLI9uHtLHHMAHAE8uHuI$IU@H([]A\A]A^A_ÐHHI$IMqff.H6L1HOL HzH~@AHMȈHH9uf.LLJHGHH6It%H~1fD:HLLH9ufIuH9H~HHH9HJ@H9@HNH Hfo 5"1fHo ftfHH9uHHHHH9u:HyH9bzHy@H9MzHy@H98zHy@H9#zHy@H9zHy@H9zHy@H9zHy@H9zHy @H9z Hy @ H9z Hy @ H9z Hy @ H9{z Hy @ H9fz @ HH9Qz@H?HHH9HNHHfo 1fHfo ftfHH9uHHHHH9:HyH9zHy@H9h1D< HH9u1ɀ< HH9uf.AWAVAUATUSHL6L/HoLgHJH:LzM~P1!@AEA$HIHMI9t+UuHL$H<$5A$H<$HL$DH[]A\A]A^A_ÐgFAWAVAUATUSH(L>L7HoLoLgL LBHzHJM~p1*@AAEA$HMLIII9tBUuHL$H|$LD$L $zAEL $LD$H|$A$HL$H([]A\A]A^A_fH6L1HOL HzH~@AHMfHH9ufLLJHOHH>It-H~#1fD1f:HLfLH9u@IuH9:H~HAH9HB@H9@HGHHfo 1fHHofufHH9uHHH4HHH9g1f:@f1HpH9M1fz@fqHpH911fz@fqHpH91fz@fqHpH91fz@fqHpH91fz @Hfq H91fz fA HHAH9HGHHfo 1fHHfofufHH9uHHH4HHH9?1f:@f1HpH9%1fz@fqHpH911fL7HoLoLgLLJLBHzM~x1,@A1ffAEfA$HMLMII9tHMfuH|$LD$LL$L$G11L$LL$LD$fAEH|$fA$@H([]A\A]A^A_ÐH6L1HOL HzH~@AHMȉHH9uff.LLJHHWH>It5H~%1fDD1E@HL2LH9uf.IuH9H~HJH9HH@H9@eHOHWIfo 11IffoHfvf HI9uHHH HHH9YD1E HNH9?D@1EHJH9#@BH HJH9HOHIfo 11If@oHfvf HI9uHHH HHH9D1E HNH9DX1EHJH9@^1D1E@Ɖ4HH9u1D1E@Ɖ4HH9uf.AWAVAUATUSHL6L/HoLgLHzLzM~P1"@AE1A$HMHMI9t*MuH|$L$5L$H|$A$fH[]A\A]A^A_ÐGAWAVAUATUSH(L>L7HoLoLgLLJLBHzM~x1(@A1AEA$HMLMII9tLMuH|$LD$LL$L$}L$LL$AELD$A$H|$H([]A\A]A^A_ÐH6L1HOL HzH~@IHMHHH9uf.LLJHHWH>It-H~$1fD1H8@HLH2LH9uIuH9t&H~1fD1H<@H4HH9u1H~1H<@H4HH9uAWAVAUATUSHL6L/HoLgLHzLzM~X1#@IE1HI$HMHMI9t1HMHuH|$L$L$H|$I$H[]A\A]A^A_fWAWAVAUATUSH(L>L7HoLoLgLLJLBHzM~x1)@I1HIEI$HMLMII9tKHMHuH|$LD$LL$L$*L$LL$IELD$I$H|$DH([]A\A]A^A_ÐH6L1HOL HzH~@IHMHHH9uf.LLJHHWH>It-H~$1fD1H8@HLH2LH9uIuH9t&H~1fD1H<@H4HH9u1H~1H<@H4HH9uAWAVAUATUSHL6L/HoLgLHzLzM~X1#@IE1HI$HMHMI9t1HMHuH|$L$L$H|$I$H[]A\A]A^A_fwAWAVAUATUSH(L>L7HoLoLgLLJLBHzM~x1)@I1HIEI$HMLMII9tKHMHuH|$LD$LL$L$L$LL$IELD$I$H|$DH([]A\A]A^A_ÐLHOIH>LLR1H~,f.IHHL9HEHMHLH9uff.fH6L1HOL HzH~@IHMHHH9uf.LHOIH>LLR1H~1f.IL9t HH?H1H)HHMLH9uH6LHOL Hz1H~*@I8 HHHMHH9ufLHO1L HzHHH~f.I90HMHH9uf.AWAVAUATUSH(HHHoLgL:LJLRHIE1DILLML9HHEH9@L9L9A4$t@tHL$LT$LL$H5 D$HH'H88LL$LT$HL$xD|$HL$LT$LL$HL$LT$LL$QfH([]A\A]A^A_Ë|$H([]A\A]A^A_f.AWAVAUATUSH(HHHoLgL:LJLRHIE1DILLML9HHEH9@L9L9A4$t@tHL$LT$LL$H5 D$H'H8LL$LT$HL$xD|$HL$LT$LL$HL$LT$LL$QfH([]A\A]A^A_Ë|$H([]A\A]A^A_f.AWAVAUATUSH(HHHoLgL:LJLRHIE1DILLML9HHEH9@L9L9A4$t@tHL$LT$LL$H5 D$H'H8LL$LT$HL$xD|$HL$LT$LL$HL$LT$LL$QfH([]A\A]A^A_Ë|$H([]A\A]A^A_Zf.AWAVAUATUSH(HHHoLgL:LJLRHIE1DILLML9HHEH9@L9L9A4$t@tHL$LT$LL$wH5+ D$H'H8LL$LT$HL$xD|$HL$LT$LL$mHL$LT$LL$QfH([]A\A]A^A_Ë|$H([]A\A]A^A_*f.AWAVAUATUSH(HHHoLgL:LJLRHIE1DILLML9HHEH9@L9L9A4$t@tHL$LT$LL$GH5; D$H'H8xLL$LT$HL$xD|$HL$LT$LL$=HL$LT$LL$QfH([]A\A]A^A_Ë|$H([]A\A]A^A_f.AWAVAUATUSH(HH.HLoH$HBLwHD$HBHD$H~rIE1DHIUH9AL9u6L9u1CH5w D$H'H8t|$x,WIH$Ll$Lt$L9uH([]A\A]A^A_ÐH([]A\A]A^A_ff.fUSLLHOH*HHZLZM~LI1'fDL9tH9HLHHIHLI9tIH1L9uH7[]ff.fUSLLHOH*HHZLZM~LI1'fDL9tH9HOHHIHLI9tIH1L9uH7[]ff.f'GgwUSLLLGHOH*HZLZM~DH1fDHHIILI9tII8H9tHH9uH[]Df.wUSLLLGHOH*HZLZM~DH1fDHHIILI9tII8H9tH)H9uH[]Df.wUSLLGHOH>H*HZLZH~0I1II0L9tHHHIILH9u[]fUSLLGHOH>H*HZLZH~0I1II1L9tHHHIILH9u[]fSLHLGLHLZHZM~m1~CH=fH*AYf(fTf.r"H,HHLMHI9tHH9uH7D[ff.SLLHOLHLZHZM~m1~H)=fH*AYf(fTf.r"H,HHMLHI9tHH9uH7D[ff.ATUSLLLGL"HHjHZM~JI1@HHHHMIHI9tII0L9tHuLf[]A\ff.SLHLGLHLZHZM~m1~H =fH*A^f(fTf.r"H,HHLMHI9tHH9uH7D[ff.USLLLGH*HHZLZM~\H12fDffH*H*^HIILI9tIIH9tH9u$f[]ff.fAWAVAUATUSHL*LzHHoL6ItGM~/E1f.Q6IMLLM9uH[]A\A]A^A_@IuHu@uHH)HH?H1H)HH9uIME1AtVL)IIM9MGM)MffB.QBLIM9uJLHtQI9sBQB)DII9rMfM9B.QwRBLIM9uI9sBQB)DII9rT$ L$T$ L$T$ L$T$ L$T$ L$T$ L$MfDAWAVAUATUSHL*LzHHoL6ItGM~0E1ff.Q'IMLLM9uH[]A\A]A^A_IuHu@uHH)HH?H1H)HH9uIME1AtDL)IIM9MGM)Iu%ff.QMHCALHtUI9sfBfQB)DII9rMfM90fBf.QwQBLIM9u I9sfBQB)DII9rT$ $_T$ $T$ $?T$ $ $( $$ff.SHHGH LBLJHH6H9tmHtHMuIu L9$L9tH~(1XHHLLH9u[M9u I!Mtf.HuL9uMIQIIHkX[IwI9nHH H ڃ\HH)II?L1L)H H9:HH)II?L1L9!IAII11MIM)AIAML9sX)HL9rHH9XHH9u[DHH ƒHH)II?L1L)H H9pHH)II?L1L)HSI(AI1IM)MIA-I9vX)HL9rHH9'XHH9u[HH ƒHH)II?L1L)H H9HH)II?L1L)HI(AI11IM)MIAI9vX)HL9rHH9eXHH9u[úL)III9LGMufDXHI9uLN L)III9LGM<1XHI9uLN L)III9LGM]1XHI9uNLNI6I9(X)HL9rML9CX)HL9r&I9(X)HL9rH9t5L9X)HL9rX)HL9rH9t#L9(X)HL9rL9(X)HL9rvHLGHGL LRHzH6L9tnSMtPHuIu M9,I9tH~)1\HLHAMH9u[I9u IHtfMuM9uH~1H\HH9uM9xInHL H ʃ\LH)II?L1L)H L9:LH)II?L1L9!MAIH11MIM)AIM-L9s\A)HL9rHH9\AHH9u[@HL ƒLH)II?L1L)H I9pLH)II?L1L)HSL('I1HH)HHACH9v(\A)HH9rII9%B\CII9u[HL ƒLH)II?L1L)H L9LH)II?L1L)HM(AI11HL)IIA%I9v\A)HL9rHH9]\AHH9u[úH)HHH9HGHu @B\CIL9uHLL)III9LGM:1\AHI9uLNL)III9LGMN1\AHI9uN LJ I&I9(\A)HL9rML92($\A)HL9rH9(\A)HH9rH9t7L94\A)HL9r\A)HL9rH9t$L9(\A)HL9rL9y(\A)HL9r\LLOHGLLZHzHM9tvMtQHuIu M9eL91H~EDAYHMHAMH9uL9u IHtfMuM9uAH~1fYHHH9uAf.L9kIaLH L ƒOLL)HH?H1H)H M9-LH)HH?H1H9HLLPfLH ƒLH)HH?H1H)H I9LL)HH?H1H)HHLL4R@LL ƒLL)HH?H1H)H M9sLH)HH?H1H)HVHLLR@LLOHGLLZHzHM9tvMtQHuIu M9eL91H~EDHAM^HAMH9uL9u IHtfMuM9uAH~1fH^HH9uAf.L9kIaLH L ƒOLL)HH?H1H)H M9-LH)HH?H1H9HLLRfLH ƒLH)HH?H1H)H I9LL)HH?H1H)HHLLdT@LL ƒLL)HH?H1H)H M9sLH)HH?H1H)HVHLL$U@LLHHGHwLJLZMuFITMsS11fD.EHLLȈLL9u[DIuM!IuuHM(tSH)HHL9IGI)Ht5( #fBT,B<IL9uLHH9vLfo-1(((d(L \0fkfkfcfHH9rIM9\( DBT,BIM9u@IHM(tVH)HHL9IGI)Ht8( fB(T,BIL9uLHH9vQfo-fD(((d(L \0fkfkfcf>HH9rI( ~M9=DBT,BIM9u@IIHH ʃqHM1tNAI)LHL9IGI)H( TD,D>HH9uIMI9vRfo-\L T0\L T0fkfkfcfHL9rHI9~/( `T,Ј>HI9uDHeff.@LLHHGHwLJLZMuFITMsS1.EHLLȈLL9u[DIuM!IuuHM(tSH)HHL9IGI)Ht5( cfBT,B<IL9uLHH9vLfo-q(((d(L \0fkfkfcfHH9rIM9\( DBT,BIM9u@IHM(tVH)HHL9IGI)Ht8( SfB(T,BIL9uLHH9vQfo-^fD(((d(L \0fkfkfcf>HH9rI( M9=DBT,BIM9u@IIHH ʃqHM1tNAI)LHL9IGI)H( .TD,D>HH9uIMI9vRfo-F\L T0\L T0fkfkfcfHL9rHI9~/( T,Ј>HI9uDHeff.@LHHOHwH:LBLRHu6IDM~#1D/HHLLL9uHuM1IuuHM(tTH)HHL9IGI)Ht6( ffBT,B<IL9uLHH9vLfo-((d(L (\0fkfkfcfHH9rIM9( DBT,BIM9u@IIM(AtZL)IIM9MGM)Mt<(  f(T,Ј>HI9uLHL9vXfo-(((B(BdBL B\0fkfkfcfBII9rL( I9T,Ј>HI9ufDIIHH ƒqHM1tNAI)LHL9IGI)H( nTD,D>HH9uIMI9v^fo-4|((\(L (T0t |0fkfkfcfHL9rHI9( T,Ј>HI9uH[DLHHOHwH:LBLRHu6IDM~#1D/HHLLL9uHuM1IuuHM(tTH)HHL9IGI)Ht6( ffBT,B<IL9uLHH9vLfo-((d(L (\0fkfkfcfHH9rIM9( ]DBT,BIM9u@IIM(AtZL)IIM9MGM)Mt<(  f(T,Ј>HI9uLHL9vXfo-(((B(BdBL B\0fkfkfcfBII9rL( AI9T,Ј>HI9ufDIIHH ƒqHM1tNAI)LHL9IGI)H( TD,D>HH9uIMI9v^fo-4|((\(L (T0t |0fkfkfcfHL9rHI9( T,Ј>HI9uH[DLHHOHwH:LBLRHu6ITM~#1D/HHLLL9uHuMIIuu HM(t[H)HHL9IGI)Ht=(4f fB(T,B<IL9uLHH9vUfo%:f.(((l(L T0fkfkfcfHH9rIM9(DB T,BIM9uIIM(At^L)IIM9MGM)Mt@( f (T,Ј>HI9uLHL9vTfo%@B(B(lB(L B(T0fkfkfcfBII9rL(qI9 T,Ј>HI9uf.IrIhHH ƒYHM1tRAI)LHL9IGI)H( TD,D>HH9uIMI9vRfo%\L T0\L T0fkfkfcfHL9rHI9(@ T,Ј>HI9uHcLHHOHwH:LBLRHu6ITM~#1D/HHLLL9uHuMIIuu HM(t[H)HHL9IGI)Ht=(df fB(T,B<IL9uLHH9vUfo%jf.(((l(L T0fkfkfcfHH9rIM9(DB T,BIM9uIIM(At^L)IIM9MGM)Mt@(A f (T,Ј>HI9uLHL9vTfo%D@B(B(lB(L B(T0fkfkfcfBII9rL(I9 T,Ј>HI9uf.IrIhHH ƒYHM1tRAI)LHL9IGI)H( TD,D>HH9uIMI9vRfo%\L T0\L T0fkfkfcfHL9rHI9(p T,Ј>HI9uHcUSLLHOH*HHZLZM~71fAA.AE.AEHIH!ЈLI9u[]fUSLLHOH*HHZLZM~71fAA.AE.AEHIH ЈLI9u[]fUSLLHOH*HHZLZM~71fAA.AE.AEHIH1ЈLI9u[]fH6H1fHLE1LJH~ D.AEHLЈLH9uff.LLJHH6HWIt5H~!1fD.HLLH9u麘f.IuŨuHI1Ƀt>AI)LIHH9HGI)H. HH9uII9vUfo%jf.((\(L (T0fkfkfcf:HL9rHH95@. HH9uHsff.LLJHH6HWIt=H~01 6fDT.HLLH9ukIuufHI1tMAI)LIHH9HGI)H T.  HH9uII9(%(fo=f((UUt((UL Ul0D(D(D(D(DDDDA(A(A(A(UUUUfkfkfcf:HL9rH H9T.1 HH9uHLLJHH6HWItEH~4 1~fDT.HLLH9u鷕IuufHI1tQAI)LIHH9HGI)H cT. HH9uII9vr(-(% fo5A((UU|((UL UT0UUUUfkfkfcf:HL9rHH9 L@T. HH9uHCLLJH6HHGIt-H~1fD:HLLH9u=DIuuHI1Ƀt1H~!H(^LLH9uHD$dH3%(u[HÐHH ƒuHH)HH?H1H)HH9uHt$HH)II?L1L)HwH=)薎fDHOHz1H+H~fHHH9uff.@LHO1L HzHH~@AHMHH9uLLJHHWH6ItEH~31fbf/wWXHLLH9uhIuI¨uuHH)HH?H1H)HH9uHI1ɃtZAI)LIHH9HGI)Ht5fXHH9/w(\(HIAti(XL9s,(U) HL9rHfH9|XHH9/w(\(LL9s((U ) HL9r@LLJHHWH6It5H~*1 ־fDHLWLH9uDIuI¨uuHH)HH?H1H)HH9uHI1ɃtMAI)LIHH9HGI)H EDWHH9uLIAtK( L9sW)HL9rH H9}=@WHH9uL9s( (W)HL9rHfLHO1fL HzHH#^fDHMHH9t=A/w/w.zf~fA~ADt$D$TfDff.@AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~/1DAHHM܊Hl$AEL,$I9uH[]A\A]A^A_fAWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~/1DAHHMHl$AEL,$I9uH[]A\A]A^A_fAWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~/1DA}AHM[L,$EHl$I9uH[]A\A]A^A_fAWAVAUATUSHHBHL'HoLwL*H$HBHD$H~WE1&fAIMH,$Lt$L9t,HEA$HcH9t Hſ諁A@H[]A\A]A^A_ÐSHHGH LBLJHH6H9tmHtHMuIu L94L9tH~(1XHHLLH9u[M9u I)Mtf.L9uHuMIQIIHB.X[IwI9nHH H ڃ\HH)II?L1L)H H9:HH)II?L1L9!IAE111INIM)AMIAM L9sffX)HL9rHH9XHH9u[HH ƒHH)II?L1L)H H9hHH)II?L1L)HKIf(fA)E11IIM)MIAL9sffX)HL9rHH9XHH9u[fHH ƒHH)II?L1L)H H9HH)II?L1L)HIf(fAE111IIM)MIAML9sffX)HL9rHH9OXHH9u[úL)III9LGIXAL)III9LGIvXA,L)III9LGIFXAAML9yffX)HL9rZL9"f(fX)HL9rL9f(fX)HL9rH9t:L9fffX)HL9rffX)HL9rH9t0L9f(fX)HL9rML-L9f(fX)HL9rpML1ML1ff.HLGHGL LRHzH6L9tnMtIHuIu M9EI9H~w1D\HLHAMH9uI9u I1Htf.MuM9uH~1H\HH9uM9sIiHL H ʃWLH)II?L1L)H L95LH)II?L1L9MSAE111HNIL)AIIAML9sff\A)HL9rHH9}\AHH9u[HL ƒLH)II?L1L)H I9cLH)II?L1L)HFMf(fA211IHM)MIL9sff(f\A)HL9rII9B\CII9ufDHL ƒLH)II?L1L)H L9LH)II?L1L)HvMf(fAE111IIM)MIA(I9vff\A)HI9wHH9\AHH9uúL)III9LGI\AAL)III9LGIA\A%L)III9LGIP\AA2L9Cf(f\A)HL9r$I9f(f\A)HI9wMtuL9%f(f$f\A)HL9rH9tHH9rIM9f(B~ ~fT,BIM9uIHMf(fɃE1LHH9v\fo@f(f(f(f(fflf\ fd0fkfkfcfcff>HH9rIf(M9B~~ fT,BIM9uIIHH ʃHMك5E1LHH9v_fo?ffdfL f\0ffdfL f\0fkfkfcfcffHH9rIM9~3f(B~B~ fT,BIM9u@úH)HHL9IGI)HQ~~f(fT,Ј8H)HHL9IGI)H2~~f(UfT,ЈH)HHL9IGI)H~~f(fT,@>fL LHHGHwLRLBMuFIMS1f.EHLLЈLL9u[@IuMIuuHMf(fۃE1LHH9v\fo@f(f(f(f(fflfL fd0fkfkfcfcff>HH9rIM9f(׬B~ ~fT,BIM9uIHMf(fɃE1LHH9v\fo<@f(f(f(f(fflf\ fd0fkfkfcfcff>HH9rIf(M9B~~ fT,BIM9uIIHH ʃHMك5E1LHH9v_fo_ffdfL f\0ffdfL f\0fkfkfcfcffHH9rIM9~3f(B~B~ fT,BIM9u@úH)HHL9IGI)HQ~~f(fT,Ј8H)HHL9IGI)H2~~f(ufT,ЈH)HHL9IGI)H~~f(.fT,@>fLLHHOHwLJHzMu>I\M~$1Df/HLLHL9uf.IuM9Huu IMf(fA:L)IIM9MGM)I~~f(HfT,ЈLHL9vbfoDfB(fB(lfB(L fB(d0fffffkfkfcfcffBII9rLI9f(f.~ ~fT,ш>HI9uDHIMf(fAL)IIM9MGM)I~~f(!fT,ЈLHL9v`fof(f(f(f(fBfBlfB\ fBd0fkfkfcfcffBII9rLf(I9f.~~fT,ш>HI9uDIzHpHH ƒaHMуAI)LHL9IGI)H~~ f(fTD,DIMI9vofof4f|f(f(df(L f(\0ffft f|0fffkfkfcfcffHL9rHI9f(e~~ fT,Ј>HI9u111;ff.LLHHOHwLJHzMu>I\M~$1Df/HLLHL9uf.IuM9Huu IMf(fA:L)IIM9MGM)I~~f(XfT,ЈLHL9vbfoDfB(fB(lfB(L fB(d0fffffkfkfcfcffBII9rLI9f(ʤf.~ ~fT,ш>HI9uDHIMf(fAL)IIM9MGM)I~~f(1fT,ЈLHL9v`fof(f(f(f(fBfBlfB\ fBd0fkfkfcfcffBII9rLf(I9f.~~fT,ш>HI9uDIzHpHH ƒaHMуAI)LHL9IGI)H~~ f(fTD,DIMI9vofo͢f4f|f(f(df(L f(\0ffft f|0fffkfkfcfcffHL9rHI9f(u~~ fT,Ј>HI9u111;ff.LLHHOHwLJHzMu>IdM~$1Df/HLLHL9uf.IuMQHuu IMf(fAJL)IIM9MGM)I'~~f(hfT,ЈLHL9v^fo!f(f(f(f(fBfBlfBL fBd0fkfkfcfcffBII9rLI9f(ڠf.~ ~fT,ш>HI9ufHIMf(fA'L)IIM9MGM)I~ ~f(>fT,ЈLHL9vdfofB(fB(lfB(L fB(d0fffffkfkfcfcffBII9rLf(I9f.~~fT,ш>HI9ufIbHXHH ƒIHMуAI)LHL9IGI)H~~ f( fTD,DIMI9v_foffdfL f\0ffdfL f\0fkfkfcfcffHL9rHI9f(y~~ fT,Ј>HI9u111Gff.LLHHOHwLJHzMu>IdM~$1Df/HLLHL9uf.IuMQHuu IMf(fAJL)IIM9MGM)I'~~f(hfT,ЈLHL9v^fo!f(f(f(f(fBfBlfBL fBd0fkfkfcfcffBII9rLI9f(ڜf.~ ~fT,ш>HI9ufHIMf(fA'L)IIM9MGM)I~ ~f(>fT,ЈLHL9vdfofB(fB(lfB(L fB(d0fffffkfkfcfcffBII9rLf(I9f.~~fT,ш>HI9ufIbHXHH ƒIHMуAI)LHL9IGI)H~~ f( fTD,DIMI9v_foffdfL f\0ffdfL f\0fkfkfcfcffHL9rHI9f(y~~ fT,Ј>HI9u111Gff.USLLHOH*HHZLZM~91fAfA.AEf.AEHIH!ЈLI9u[]USLLHOH*HHZLZM~91fAfA.AEf.AEHIH ЈLI9u[]USLLHOH*HHZLZM~91fAfA.AEf.AEHIH1ЈLI9u[]H6H1fHLE1LJH~!Df.AEHLЈLH9uff.L LBHH6HWIt5H~"1fDf.HLLH9u9XfIuŨuHHE1@HH9v_fo%f(f(\f(L f(T0fffffkfkfcfcff HH9wII9aBf.BII9u=H)HHHH9HGH)H>f.5DL LBHH6HWItEH~2~ 1fDfTf.(HLLH9uVfIuufHHf E1HH9f(%f(fo5f(f(fUfU|f(f(fUL fUl0fD(fD(fD(fD(fDfDfDfDfA(fA(fA(fA(fUfUfUfUfkfkfcfcff HH9cI~ xI9BfTf.BII9uH)HHHH9HGH)HfTf.L LBHH6HWItEH~6~؏ h1fDfTf.HLLH9uUDIuufHHfE1HH9f(%Õf(˕fo-f(f(fUfU|f(f(fUL ffUt0ffffUfUfUfUfkfkfcfcff HH9wII9-~ώ _BfTf.BII9uH)HHHH9HGH)H fTef.fL LBHLHWIt5M~$1fDHLfPLL9uwSIuuILAuxE1fDHL9v:L@f( fPAAD2D2HH9wL)HGHMDM9}BfPBIM9ueL)IIM9MGL)IefP\ff.AWAVAUATUSHL.L'HoL:LrM~'1fDA$HMNELI9uH[]A\A]A^A_fH6HHOLHLJLRH~D~~1@ HLLf(fTfTfVLH9ufAWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~11DAMAHMNL,$EHl$I9uH[]A\A]A^A_AVAUATUSH HHGH LBLJHoL&H9tZM~E1Mf/sf.fH~fH~HJH4$$HHLLL9uH []A\A]A^HuI9uItHM~91DMf/sf.fH~fH~HJH $$HLL9uHH)HH1H)H~HH uIAua1E1I9M9UJDJTf/sf.fH~fH~HJH $$HH9uL)HL9IGIHuCMf/sf.fH~fH~HJH$$AJE1=f(Df(\Lh)D$)$^OLf(D$L)HI9s f($fB_TfB_DI)$I9r)D$OTf(D$tH.Hf_$f(ff_f/sf.fH~fH~HJH$$AVAUATUSH HHGH LBLJHoL&H9tZM~E1Mf/sf.fH~fH~HJH4$$HHLLL9uH []A\A]A^HuI9uItHM~91DMf/sf.fH~fH~HJH $$HLL9uHH)HH1H)H~HH uIAua1E1I9M9UJDJTf/sf.fH~fH~HJH $$HH9uL)HL9IGIHuCMf/sf.fH~fH~HJH$$AJE1=f(Df(\Lh)D$)$LLf(D$L)HI9s f($fB]TfB]DI)$I9r)D$Qf(D$tHHf]$f(ff]f/sf.fH~fH~HJH$$SHLGHGL LRHzH6L9tU1H~HfDf/sf.fH~fI~LJL\$D$HALHMH9u[@MuM9u H~81f/sf.fI~fH~IJH\$L$HHH9u [SHLGHGL LRHzH6L9tU1H~HfDf/sf.fH~fI~LJL\$D$HALHMH9u[@MuM9u H~81f/sf.fI~fH~IJH\$L$HHH9u [AWAVAUATUSH(HL&L/LwHoLzHD$HBHD$M21f(f.\^ztf/@f/@8t\ @f.z%f(58f(fTf.v3H,f-fUH*f(fT\f(fV\f/ ۊv XɄHELl$LLt$I9teAeAf(f($$T$IT$f$$f.tf^f(f/wH([]A\A]A^A_ÐAWAVAUATUSH(HBL&L7HoLoL:HD$HBHD$M1BfDf.zthf/@f/@8tXHAEMHl$Ll$I9tLUAf(T$IT$ff.ztf/f(w΃@H([]A\A]A^A_ÐAWAVAUATUSH8HH.L'LoLwLHD$HBHD$HBHD$ HBHD$(H1ff(f.\^z8f/f(@f/@8t X\ f.z%f(=f(fTf.v3H,f5}fUH*f(fT\f(fV\f/ WvXEA/HALd$Ll$Lt$ L|$(H9A$$AUf(f($$T$^GT$f$$f.A^f(f/qdf/f(-DH8[]A\A]A^A_ÐLHLJHHMtM9t-1H~$fHLYLH9uIuHH ƒuHH)HH?H1H)H~ HHHxH9uH ؀L dH%(HD$1LBH $HHM9uIt?1H~#Hf(^LLH9uHD$dH3%(uXHHH ƒuHH)HH?H1H)HH9uHHH)II?L1L)HxH8MHOHz1HH~fHHH9uff.@LHO1L HzHH~@AHMHH9uLLJHHWH6ItEH~5~1fff/wfWXHLLH9uDfDIuI¨uuHH)HH?H1H)HH9uHI1ɃtFAI)LIHH9HGI)Hu#ff/X LPIAtsf([L9sf$f(fU) HL9rHfH9|0XHH9f/wf(\f(\vL9sf(f(fU ) HL9rff.LLJHHWH6It5H~+~ }1fDHLfWLH9u@IuI¨uuHH)HH?H1H)HH9uHI1Ƀt1ɾDA)A(EEHII!ЈLI9u[]ff.USLLLGH*HHZLZM~>1ɾDA)A(EEHII ЈLI9u[]ff.USLLLGH*HHZLZM~>1ɾDA)A(EEHII1ЈLI9u[]ff.H6LHOL1LJ1H~"fA(EHMЈLH9uff.@LHO1L HzHH~@A(HMHH9u8@H6LHOL Hz1H~%@A(؀EHMHH9u8f.LHO1L HzH-yH~.fDA(HMHH9u 98fH6LHOL Hz1H~"@A(HMHH9u7ff.fAWAVAUATUSHL.L'HoL:LrM~*1fDAt$HA4$M 4}LXZI9uH[]A\A]A^A_ff.@H6LLGHOLLRHz1H~-@A(A)tH9MMHH9uff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~81DAuHAuAvA6ME5Ll$ }Hl$(H I9uH[]A\A]A^A_HLGHGL LRHzH6L9t>1H~.()sHA8LHMH9uMuM9u)H~-1D(s HHH9u9ff.@HLGHGL LRHzH6L9t>1H~6)(sfDHA8LHMH9uMuM9u)H~-1D(s HHH9u9ff.@HLGHGL LRHzH6L9t>1H~6()sfDHA8LHMH9uMuM9u)H~-1D(sfDHHH9u9ff.@HLGHGL LRHzH6L9t>1H~.)(sHA8LHMH9uMuM9u)H~-1D(s f.HHH9u9ff.@AWAVAUATUSHHHL&L/LwHoLzHD$(HBHD$0Mz1zt&@@8t" @z  fDT$8L$8m%>nf(fTf.v3H,f-nfUH*f(f(fT\fV $$uv H}Ll$(LLt$0I9tcAmH A.|$|$0<$|$ h:H l$,$tf.w@HH[]A\A]A^A_fAWAVAUATUSH(HBL&L7HoLoL:HD$HBHD$M1RfDztt@@8t fD@HA}MHl$Ll$I9tLmH<$|$AvA6`9H ,$ztDwfDH([]A\A]A^A_ÐAWAVAUATUSHXHH.L'LoLwLHD$(HBHD$0HBHD$8HBHD$@HY1fDA,$H Am|$|$0<$|$ 8H l$,$-z-@@8t  @z @T$HL$Hj%>kf(fTf.v3H,f-kfUH*f(f(fT\fV $$rv D@A?HLd$(Ll$0A>L|$@Lt$8H9HX[]A\A]A^A_A?ncLHO1L HzHH~@A(HM9HH9ufLHO1L HzHH~"fA(HM9HH9ufDff.fHOHz1HH~ H9HH9u@DLHO1L HzHH~@A(HM9HH9uff.LHO1L HzHH~*fA(wHM9HH9u@-LHO1L HzHH~@A(HM9HH9uf'LHO1L HzHH%RffDH9MHH9t/A(wwz@fDff.@AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~21DAvHHA6M ,Hl$A}Ll$XZI9uH[]A\A]A^A_fDAWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~21DAvHHA6M0Hl$A}Ll$XZI9uH[]A\A]A^A_fDAWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~21DAvHA6MA}I(Ll$}Hl$XZI9uH[]A\A]A^A_fDAWAVAUATUSHHBHL'HoLwL*H$HBHD$H~E1-fH<$'A>Y^IMH,$Lt$L9tMHEA,$HcH9t%HH<$'A>XZH<$t'A>_AX@H[]A\A]A^A_fAWAVAUATUHSH(HBHLwL*HD$L9tkHBL&E1HmHD$M~?;IL$}D$ z$XD$ 0Hl$fALt$M9uH([]A\A]A^A_DL9uMu;HT$Ht$,$HT$Ht$H}D$ HBH6HH?HHOXD$ T0fff.@AWAVAUATUHSH(HBHLwL*HD$L9tsHBL&E1HmHD$M~F;IL#}D$z#L$\(/Hl$fALt$M9uH([]A\A]A^A_fDMuI9u;HT$Ht$$#Ht$HT$(LeL6LjM~-1DA<$L$HM"L$\I9u(2/fuf.AWAVAUATUHSH(HBHLwL*HD$L9tkHBL&E1HmHD$M~?;ILi"}D$Z"YD$.Hl$fALt$M9uH([]A\A]A^A_DMuI9u;HT$Ht$ "Ht$HT$(LeL6LjM~-1DA<$L$HM!L$YI9u(.fvfAWAVAUATUHSH(HBHLwL*HD$L9tsHBL&E1HmHD$M~F;ILY!}D$J!L$^(-Hl$fALt$M9uH([]A\A]A^A_fDMuI9u;HT$Ht$ Ht$HT$(LeL6LjM~-1DA<$L$HM L$^I9u(-fuf.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM-L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM[&L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM2L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM!L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM'L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HM+L,$EHl$I9uH[]A\A]A^A_ff.AWAVAUATUSH(HL&L?LwHD$HBLoHD$HBHD$M~Q1!DHAUL|$Lt$Ll$I9t,A?A.?1҅u1f.H([]A\A]A^A_ÐAWAVAUATUSH(HL&L?LwHD$HBLoHD$HBHD$M~Q1!DHAUL|$Lt$Ll$I9t,A?A.tH([]A\A]A^A_ÐAWAVAUATUSH(HH.L/H_HD$HBLgHD$HBHD$H~GE1fDA};AE…ILl$H\$1A$Ld$L9uH([]A\A]A^A_ff.AWAVAUATUSHL.L'HoL:LrM~$1fDA<$HMELI9uH[]A\A]A^A_DAWAVAUATUS1HL.L'HoL:LrM~%fDA<$EHMLI9uH[]A\A]A^A_~ ff.AWAVAUATUS1HL.L'HoL:LrM~%fDA<$f&EHMLI9uH[]A\A]A^A_ ff.AWAVAUATUS1HL.L'HoL:LrM~%fDA<$6"EHMLI9uH[]A\A]A^A_ff.AWAVAUATUS1HL.L'HoL:LrM~%fDA<$&#EHMLI9uH[]A\A]A^A_.ff.AWAVAUATUSHL.L'HoL:LrM~%1fDA<$HMfELI9uH[]A\A]A^A_@AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~.1DAuA>HM;#L,$fEHl$I9uH[]A\A]A^A_f.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~.1DAuA>HML,$fEHl$I9uH[]A\A]A^A_f.AWAVAUATUSH8HL?LwLoHD$HBHD$HBHD$ HHD$(H~d1'fEeHL|$Lt$Ll$ H9\$(t9EA6DEDT$ %DT$ uDDDfDH8[]A\A]A^A_fAWAVAUATUSH8HL?LwLoHD$HBHD$HBHD$ HHD$(H~d1'fEeHL|$Lt$Ll$ H9\$(t9EA6DEDT$ GDT$ uDDDfDH8[]A\A]A^A_fAWAVAUATUSH8HL?LwLoHD$HBHD$HBHD$ HHD$(H~d1'fEeHL|$Lt$Ll$ H9\$(t9EA?DDDT$ Af$DT$ uDDDDH8[]A\A]A^A_fAWAVAUATUSH8HL?LwLoHD$HBHD$HBHD$ HHD$(H~d1'fEeHL|$Lt$Ll$ H9\$(t9EA?DDDT$ ADT$ uDUDDDH8[]A\A]A^A_fAWAVAUATUSH8H.L7dH%(HD$(1HBLoLgL:HD$HBHD$HD$&HD$H~:1f.AuA>HMHT$fLl$fA$Ld$H9uHD$(dH3%(uH8[]A\A]A^A_^"ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~-1DAuA>HHML,$Hl$I9uH[]A\A]A^A_ff.AWAVAUATUSH(HH.L?LwLoLgH$HBHD$HBHD$HBHD$H~61A6A?LH<L<$Lt$fAELd$Ll$H9uH([]A\A]A^A_AWAVAUATUSHL.L'HoL:LrM~.1fDA<$HMYvfELI9uH[]A\A]A^A_ff.AWAVAUATUSHL.L'HoL:LrM~91fDA<$HM ;S^(fELI9uH[]A\A]A^A_HOHz1HH~f.<Hf1HH9uff.G9H6LHOL Hz1H~@AHMf%fHH9uDH6LHOL Hz1H~@AHMffHH9uD8AWAVAUATUSHHBL.L7LgL:HD$M~K1'ff=ufu1fDH[]A\A]A^A_fAWAVAUATUSH8H.L7dH%(HD$(1HBH_LoL:HD$HBHD$HD$$HD$H~ME1fA>IMH|$&D$$fH\$fAELl$L9uHD$(dH3%(uH8[]A\A]A^A_+ff.AWAVAUATUSHHBL&L7LoHoL:H$HBHD$M~71DA>HMHCHl$fAEL,$I9uH[]A\A]A^A_ÐAWAVAUATUSHHBL&L7HoLoL:H$HBHD$M~71DA>HMp}xH,$fAELl$I9uH[]A\A]A^A_ÐAWAVAUATUSHHBL6L'HoLoL:H$HBHD$M~g1,QfAEHMH,$Ll$I9t7A<$HEHcH9t H fAEfDH[]A\A]A^A_ÐSHHLdH%(HD$1HGLJLRH6HWH9tY1H~3fCRH X LLX@LH9uHD$dH3%(uXH[fM9uMuMMBH 6HMIHt$IfX$CXD$CfH6LHOHGLLJHz1H~7@A@QHA\ ML\@HH9u@H6LHOHGLLJHz1H~Q@AAHHMaL((YYYY\X@HH9uf.LHHOL HLRLZM*56MS1f%L1(S@.@E@.@E@A^A^GHLLLI9 Q@D(D(DTDTE/sD(D^AYX(^(AYXAY\YYGD(D^AYX(^(AYXAY\YYG=@[fDff.@LHHOL HLRLZM2=K1-hK5KD(}f.D((D^AYAYXX^(T.v%,fU*((AT\VGHLLLI9aPD((DTTD/cD(D^AYAY(XX(^(T.v$,fU*((T\VG\LHHGLLRLJ1HM+bf..ھz,H@7LLLI9t9 YP/w.zu/@f.1@LHHGLLRLJ1HM+bf..ھz,H@7LLLI9t9 YP/w.zu/@f.1@LHHGLLRLJ1HM+bf..Ӿz,H@7LLLI9t9 QX/w.zu/@f.1@LHHGLLRLJ1HM+bf..Ӿz,H@7LLLI9t9 QX/w.zu/@f.1@USLHHGLGH*HZLZM~B1E1.AAE.@@AEHHH!AMI9u[]USLHHGLGH*HZLZM~B1A@.AAE.@@AEHHH AMI9u[]USLHHOH*HHZLZM~l1fAfDHHHLI9tD.IAEфu.@AEEEt.AE.AEED f[]ff.fUSLHHOHHLZLRM~l1fA1fD.AE.@AE HHLLI9t-.IAEЄu.@AEЄt[]ff.fATUSLLHOLOH*HZLZM~X1fA.EA.@E .E.AADEHIHD 1AMI9u[]A\ff.fLH1fHLE1LRM~-D.AE.@AEHL!ʈLI9uff.@H6HHOLHz1H~@.@HLHH9u HHODH>LLJ1H~>@HT.LwT. L@H@1LLH9u fHHOH>LLJH~H~L1D@HT.r T.@H@1LLH9u9 fH6HHGLHz1H~?@IHL((YYY\X@HH9u@H6HHOLBH:H1HC5K-C%`C;fD(HH^YWX(^^ QLH9tLH((TT/s((HH^YX^^yLH9ufDHHGBHz1H~fH@HH9uH6HHOLBH:H~21lB@@HHW ALH9uAWAVAUATUSHL.HLgL:LrM~+1fDKHL A$MI9uH[]A\A]A^A_ff.AWAVAUATUSHL.HLgL:LrM~+1fD CHL A$MI9uH[]A\A]A^A_ff.HHOfH>LLJ1H-pI5\A%XA$f(@u/HLALH9t^@.@/w.z$u"/ Aw/(w.z)u'(멐/v H@t@@(f.H6HHGLLJLB1HH,bf..z2OHLLLH9t8IX/w.zu/s.z_DH6HHGLLJLB1HH,bf..z2OHLLLH9t8IX/w.zu/s.z_DH6HHGLLJLB1HH,bf..z2_HLLLH9t8 YP/w.zu/s.zWDH6HHGLLJLB1HH,bf..z2_HLLLH9t8 YP/w.zu/s.zWDSH HLdH%(HD$1HGLJLRH6HWH9tY1H~3fCRH X LLX@LH9uHD$dH3%(u[H [fM9uMuMMBH 6MIHt$H|$I4XD$CXD$C ff.@H6LHOHGLLJHz1H~7@A@QHA\ ML\@HH9u@H6LHOHGLLJHz1H~S@AAHHMaLf(f(YYYY\X@HH9uLHHOL HLRLZMB5<S1f~%<1f(Tf.@E@f.@E@A^A^GHLLLI9 Q@fD(fD(fDTfDTfE/sfD(D^AYXf(^f(AYXAY\YYGvfD(D^AYXf(^f(AYXAY\YYG,f[fDLHHOL HLRLZMR=:;1~-:5@;fD(fDfD(f(D^AYAYXX^f(fTf.v,H,ffUH*f(f(fAT\fVHGHLLLI9aPfD(f(fDTfTfD/QfD(D^AYAYf(XXf(^f(fTf.v+H,ffUH*f(f(fT\fVHGILHHGLLRLJ1HM,bf.f.ھz-H@7LLLI9t8 YPf/wf.zuf/@fD1@LHHGLLRLJ1HM,bf.f.ھz-H@7LLLI9t8 YPf/wf.zuf/@fD1@LHHGLLRLJ1HM,bf.f.Ӿz-H@7LLLI9t8 QXf/wf.zuf/@fD1@LHHGLLRLJ1HM,bf.f.Ӿz-H@7LLLI9t8 QXf/wf.zuf/@fD1@USLHHGLGH*HZLZM~D1E1f.AAEf.@@AEHHH!AMI9u[]DUSLHHGLGH*HZLZM~D1A@f.AAEf.@@AEHHH AMI9u[]DUSLHHOH*HHZLZM~t1fAfDHHHLI9tLf.IAEфuf.@AEEEtf.AEf.AEED fD[]DUSLHHOHHLZLRM~t1fA3fDf.AEf.@AE HHLLI9t3f.IAEЄuf.@AEЄt@[]DATUSLLHOLOH*HZLZM~\1ffA.EfA.@E f.Ef.AADEHIHD 1AMI9u[]A\fLH1fHLE1LRM~/Df.AEf.@AEHL!ʈLI9uff.fH6HHOLHz1H~@f.@HLHH9u0HHOH>LLJH~P~3.:1@HfTf.wfTf. :@H@1LLH9uHHOH>LLJH~L~.391@HfTf.r fTf.@H@1LLH9uUDH6HHGLHz1H~A@IHLf(f(YYY\X@HH9ufH6HHOLBH:H1~X258-2~%2>fDf(HH^YfWXf(^^ QLH9tSHf(f(fTfTf/sf(f(HH^YX^^yLH9uff.HHG%2Hz1H~fHH@HH9uH6HHOLBH:H~3~11@@HHfW ALH9ufAWAVAUATUSHL.HLgL:LrM~+1fDKHLA$MI9uH[]A\A]A^A_ff.AWAVAUATUSHL.HLgL:LrM~+1fD CHLA$MI9uH[]A\A]A^A_ff.HHOfH>LLJ1H-650%0&ff(@u2HLHALH9tl@f.@f/wf.z/u-f/90wf/f(wf.z0u.f(f/v 6@t/yf(ofDH6HHGLLJLB1HH-jf.f.z3OHLLLH9t?IXf/wf.zuf/sf.z_ff.@H6HHGLLJLB1HH-jf.f.z3OHLLLH9t?IXf/wf.zuf/sf.z_ff.@H6HHGLLJLB1HH-jf.f.z3_HLLLH9t? YPf/wf.zuf/sf.zWff.@H6HHGLLJLB1HH-jf.f.z3_HLLLH9t? YPf/wf.zuf/sf.zWff.@SH0HLdH%(HD$(1HGLJLRH6HWH9tI1H~'fkHj+L*L8xLH9uHD$(dH3%(uLH0[DM9uMuMMBH 6HMIHt$Iv+,$;kl${f.H6LHOHGLLJHz1H~+@AhHiA(M)L8xHH9uH6LHOHGLLJHz1H~7@A(HAhM)iL8xHH9u@LHHOL HLRLZMS11D@E@tx@E@tr?HLLLI9}(h)is?fD?q@[@H6HHOLLJLR1HH|$D\$fAfAfD\$<HLLl$l$?oLH9t4(h)is@DLHHGLLRLJ1HM4zf.z5H@7LLLI9tH)i(hwfDzu@@ fD1@ff.@LHHGLLRLJ1HM4zf.z5H@7LLLI9tH)i(hwfDzu@@ fD1@ff.@LHHGLLRLJ1HM4z5H@7LLLI9tP)ih(w fDzu@ fD1@LHHGLLRLJ1HM4z5H@7LLLI9tP)ih(w fDzu@ fD1@USLLHOH*HHZLZM~D1E1A()AhiAEAEHIH!ЈLI9u[]DUSLLHOH*HHZLZM~D1A@A()AhiAEAEHIH ЈLI9u[]DUSLLHOH*HHZLZM~|1AfHIHLI9tX)iA(AEuAh@AE@t AE@AE 땐[]ff.fUSLHHGHHLZLRM~|1A/fAE@AE HHLLI9tC(h)AEЄuiAEЄt غ[]ff.fATUSLLLGH*HHZLZM~[1A)AiEA(E AhEADEHIID 1ЈLI9u[]A\f.LH1E1HLLRM~1)iAEAEHL!ЈLI9uff.@H6HHOLHz1H~@(hHLHH9uH6HL LB1HH~G@i)؀Et؀E HLLH9uhHHOH>L LB-U)1H~NfDh(r@fDH@1LLH9u fH6HHGLHz1H~+@)HiL8xHH9uH6HHOLBH:1H~x,@HH9yLH9t@(hsHH9yLH9uff.HHGHz1H~&@8HxhHH9uff.H6HHGLHz1H~@i)HL8xHH9u@AWAVAUATUSHL.HLgL:LrM~/1fDsHss3LIH A<$MI9uH[]A\A]A^A_f.AWAVAUATUSHL.HLgL:LrM~/1fDsH3ssL H A<$MI9uH[]A\A]A^A_f.HHOH>LLJ1HEf@uSf.@9HLyiLH9tw(h@wz$u.wwz'u% fDv @tx @ff.@H6HHGLLJLB1HHSzZ$@f.f.?HLLLH9t9)i(hw z usz?붐ff.@H6HHGLLJLB1HHSzZ"ff.?HLLLH9tA)ih(w z usz?DH6HHGLLJLB1HHSzZ$@f.f.?HLLLH9tI)i(hw zus @fz?릐ff.@H6HHGLLJLB1HHSzZ"ff.?HLLLH9tY)ih(w zusf. f.z?떐ff.@AWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1`fHtjQIHtiHI/uIOD$LQ0D$tDIA$H$Hl$Ld$M9t)H;HuHuH=.&HuH5"&H([]A\A]A^A_ÐAWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1`fHtjqIHtiHI/uIOD$LQ0D$tDIA$H$Hl$Ld$M9t)H;HuHuH=N&HuH5B&H([]A\A]A^A_ÐAWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1`fHtjIHtiHI/uIOD$LQ0D$tDIA$H$Hl$Ld$M9t)H;HuHuH=n&HuH5b&H([]A\A]A^A_ÐAWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1`fHtjIHtiHI/uIOD$LQ0D$tDIA$H$Hl$Ld$M9t)H;HuHuH=&HuH5&H([]A\A]A^A_ÐAWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1]fHtg1IHtnH4I/uIOD$LQ0D$tIIA$H$Hl$Ld$M9t.H;HuHuH=&HuH5&1fIHuH([]A\A]A^A_ff.@AWAVAUATUSH(HL6HHoH$HBLgHD$HBHD$ME1`fHtjIHtiHAI/uIOD$LQ0D$tDIA$H$Hl$Ld$M9t)H;HuHuH=&HuH5&H([]A\A]A^A_ÐAWAVIAUATIUSH1H(M6H+II$H[HD$ID$HD$M~,E1fDL}Mt?1LLZt5Mt ImH([]A\A]A^A_fDL=&LLuLL1HtH;HtH/uHWHD$R0HD$IHHl$H\$M9-KHfv@IELH@0H([]A\A]A^A_DH&H5jH8Bf.H&HHpH@H&HHPHHr@@HH1ff.~tAUBATLlUHSHHL%]&I$u;u*I$u;H[]A\A]DHHL9u11DH&SHhHXHHPHHuHGP0[ff.H5 5'SHHtH&H[HH@DHHH4'HuɃ[Hc0HcHcHcsH8AWAVIAUMATUSHdH%(HD$x1HFHh (IL$ AǃL$ ;uvMtqAEI\$ H;& Ld$Ld1HLI61LHH(H5&[HH(Dh1Ht$xdH34%(HĈ[]A\A]A^A_ÃuH\$d1IH_&HLH;&HH8yDAH&HIH,H81AE1MMd$ L;%&HcLH HH=%H1HHlHLH+Hu HCHP0HEHmHEHP0f.H1&HLH5F%H81DHPHR0qH&HLH5MH81CH&HLH5rH81 6fDAVIAUIATIULSHHGHHHt2HGH8SA$TB=#YPMtHCHxAEHHEHCHXH;&tH%LHH=$H1HHE[]A\A]A^fHt Ht$LHY&H=#H1pHEMtA$ [1]A\A]A^@HH5s#HiIHHUI,$%ID$LP0f+HuA$Hf&A$H5H81*Hy&H$H5"H81H &AUH5"H81H#&H5H8TI,$ID$LP0tH&H5`H8 ff.AWAVIAUAATIUSHHHdH%(HD$81HHP8BuHWHR8DjAL=n&pHx IHHCpHx IH9HHH Ht$HQH$HSHzH|$1HtyHI8Hcy H|$ 1HtzthHB8HcH HL$(Ht$Eu HhHT$ Ht$HLAHD$8dH3%(urHH[]A\A]A^A_fDHVHB(HHI(H9i@HT$ HLHHt$AHtH~ff.AWAVAAUIATUSHHxHT$dH%(HD$h1HHP8BuHWHR8BjL%&pHx I$HHCpHx I$IHCpHx I$L9LHH9HHDH;HKHt$0HWHT$HQHT$HSLJLL$ E1HtH8LcO LL$P1ItyHI8Hcy H|$X1HtzHB8HcH HL$`Ht$8Ht$@Eu HHT$PHt$0HL$H|$AHD$hdH3%(Hx[]A\A]A^A_ÐHH9H @HWHR8DBEA}H(L"@HB(HP@HI(H9!@HT$PHt$0HL$HH|$AHLHx?ff.AWAVIAUMATIUHSHHL=&DL$,L$LL$dH%(H$1IHD$8HD$@LL$HL$@Ht$PHLD$,LHT$PHPHT$XHHT$8HD$`AIL0HD$ H$H$HD$(HD$HHD$HD$pHD$HHt$HHUHKHH$HHHt$HHUHHKHuHT$xH$HT$Ht$pHL$@H$H|$H$Ht$H$T$8H$LAՅ|I1LHD$HIFHEHUH|$HL$@HD$pHt$HT$xHSH$HH$HT$H$H$T$8LAՅuHEHULHL$@H|$HD$pHT$xHSH$HH$HT$H$H$T$8LAՅuHD$ HtHD$,H$dH3 %(Hĸ[]A\A]A^A_@H)$HD$HcfILH=sHD$ fHD$pHD$+Hf\\ff.SHHpOH{xFH:H.H{P%HH{`HtH/t*H{XHtH/t H[fHGP0H[HGP0AWAVIAUIATUHSHH`HL$t =AF0E1L%&AF0AD9~DA^I$}AHcI^@3t:Cuȃ}t<tK8tZMAF0E1 fAE9~0~vA^I$}AHcI^@3t:Cu:Cuƃ}t<tIV IcHL$HIUIV(HHEH1[]A\A]A^A_fDH[]A\A]A^A_@L%&I$HR89HcHHtI~`HH+Iu HCHP0M1LHtCMDH@HkHP9 u;Ju;JuHHL$IUH@H1Dj5DAT1USHtqHHLMtUH{LcH{(HtڋC ~#1HcHD$8~H|$PHH=Hw&1HhHH$H;=&L1E1E11HA(HT$PHH~HH=v HH=\H=`HH$Ho&H9PH;f&HT$x;H=HH$HT$XHH=HÀۅT$l9T$,H$HxH;=&H|$hH&HHpH9tUuH&H9$H&H5H8Ht$H$Ff.H=HHk&Ht$`H$HhH=HufH&H$H$Hxt_H$HHD$@H8rH=/1HT$@Hn1EHɢ&HL$HH5MH81SMt I/FHD$XH8Ht H/#HD$XHHD$@H8Ht H/HD$@HHD$PHH8Ht H/>HD$PH<$HD$@H8H$HT$@$HHHt$HH=t Ht$H H=IPu IF@t#HԢ&H5XH8踷HGP0HGP0IGLP0H=HaH&Ht$pH$HTHGP0Ht$HH= THt$H H=4Ht$HH=qHt$HH=YH!&H5WH8蒻$MeI/[IWLR0${H&H5*H8EMHt$H3fDHcT$hHH9PHT$XLd$IH$HcLH|I9\$huLd$HA&H5H8誺H&H5H8菺H&H5H8t|H(&H5H8Ya|$hHH5qHNH&H8.6H&H5{H8HǞ&H50H8nff.USHH&H9t~Hw&HH@H9GtJHH5&軮HHtH˻uH+t1HtHE袸HHH[]DHHH[]fHCHP0@1HtHHHH[]ATHHEUIHHS1HHH5M襹HNH;&HL%&HxI$HpH9t ߲HEH9S;PHp I$H{ HESH{(Hp(I$twHEH{8Hp8I$t]H}H/tH]1H[]A\@HGP0HHP1HHuHSD$ HR0D$ H[]A\@H&H5rH8H+u HCHP0HuH&H5H8谷٬HuH]&H5~H8获9fDAWAVAUAATUHSHXHGH|$Ht$0DD$dH%(H$H1HHD$D$'AL%ԛ&L1HD D$ HD$@M7I$I~H;xHpPH9I~H5&H9аu|I~H5&H9tl跰ucIFH;&tVHuIH5&L芫HHH薸HcD$ HLt@H@T$ fIL9|$)D$ H$@I$fH|$@AHD$@HD$(H$@D$I@fDH+u HKHT$8HD$Q0HT$8D$D$HID9|$ ~>HD$(I$fJ<f/D$KwH*uHJHIQ0D9|$ ‹D$E1CD%J\HH9D$HT$L=&H|ML9HH&HH@H9GH5&IHtH I/J\HHtHID9d$RHt H+H$HdH3%(HX[]A\A]A^A_f.EuS|$'tLL=&H|$0H5&lHL9JDlfDL9H|$0uHFN|L>N|5fDIGLP0 H$HdH3%(u`HCHH@0HX[]A\A]A^A_T$1ۅ6H+t18HCH1P0'育دATUHH=?'SHty1H1 HHHuHHtMH=p1蚦HHHܪH+Iu HCHP0HELHPHUHu HEHP0H[]A\H=贱HHt&H5HͮH'H+u HCHP0H='H=1H[]A\ff.WvG<v@_uÃ01@ AWAVAUATUSHdH%(H$1HDŽ$HDŽ$HDŽ$DŽ$H|GhHD$LcGD$eIIHt%H5&H軪HtH5&H9pEL%&I$AH8HxAhHLLH$QH$QH 5&RH$RHP1L$L$H0HD$L$I$IzHpH9t٪I$L$E1E1111L(IMIF8@H$HtBH$AnH0H;=&HG I$ Aǃ,u0A9;A92E D$D$ )E@H$DH<AA@$Lk8DŽ$ DŽ$IcVD$H$MIHD$H$HD$ HLDH$1HHD$(~NHc$H$MH DHcHcƄH9uދkEHhHcH>fDhHLLHI$H$H %&R8H$RHxH$P1L$L$XH0t@I$E1AHH$(HD$H3f.H$HtH/ fE1H$dH3 %(L-Hĸ[]A\A]A^A_ÐL$I$IzHpPH9讧H$1H1H=1kE111HI$1H$I(IHHmHEHP0@Hx% HPH5Z&L"DHу&H5rJHo&H81EHLLHDŽ$H$QH$QH &RH$RH-P1L$L$舢H0\H$t#Hb&H5nH8F.HD$YH &H5J3fDŽ$D$ 'H&H5:E1H81EH&H52JH&H81H$Ht H/uHGP0I.IFLE1P0H$HtH@8H$HH$IV8BH wmLC8H=Lt H=wLu3z w-Pƒ{DI$hH$H$l$ }1H$HȉHHH9u@/H$H$Lk8D$L$@MH$ HDŽ$D$HH$(HH$0HHDŽ$LDHD$HDŽ$HDŽ$HDŽ$DŽ$DŽ$LPH@ HIcHHD$ IF HL$L H~BIL9 H 1IH I9 HcH91H$H$LT$0H5D\$(wMD\$(LT$0tID$HLT$0H$H$H$D\$($D\$(LT$0'IF8A^$9xI$LT$8D\$(hLT$8D\$(HD$0H$H|$0L+1,f.EDžH9A9uD]DžDžH5AH$H$Lk8H$H$H5cL$@MH$ HDŽ$D$$HDŽ$D$HH$(H'HDŽ$LD1HDŽ$DŽ$DŽ$ MtID$H$HH$H$$IF8En$9xu I$hH$HHTD$E~fDEHE|A9uH L$H$I$L$AFA R $H$HAH$$jjH$8RAUH$(Rd L$H0HHI$HHHH$I$t$HH@H$I$@I$HMH$Hcl$H@ H< H$pHx I$H H I$HHo H$1Hߋ@ D$I$xHD$8H(I$HH$HIHB HHH$HB(H H$H@(HL$H,I$H$hH$`H$p0I$H0uI$HH=HD$@HcD$Lt$HDt$L|$HD$0H$`L|$8HD$H$HD$ H$@HD$(HHt HH$@HHtH(u HPHR0H$@H$HHHH$~3HD$H$PH$HH$HT$Ht$ H|$($HAׅzI}H$@IuH$HIEH$PADHT$0芞wD;D$ >x1ɅPH\$@IHDl$HLt$8AD$(D$04D99x^FIGL9IH$IcH|I$ AƃuԗH&|$(|$0ALC8H=/L€HGE1P0TAGH5!H&H8H$HYa@Hy&H5E1H8fE1D$HD$01H$H$H5X Hs8HCL$`L$hHDŽ$pHHDŽ$HEHDŽ$HD$8HD$HDŽ$HBH &HHƿ1SIHwH$HHH$`II/uIWD$LR0D$2I$H$H$_H$H/uHGP0H$H/uHGP0HA1LH$AUHc$IHPH.SPt$XjD$@PD$PPt$pHt$p,HPIHEHHEHuHEHP0@I.u IFLP0H$H/uHGP0MH$H$IGH9GE1LHH5MH H;U&I/5IWHD$LR0HD$ItIF8xhHHHH=&H胓H+HCHE1P0z H=L€ҺDjf.Lt$8H\$@Lcl$H;@H=[ HHt-HH5%H+HH& HCHP0H=&M AGAd R$H$HAH$$jjH$8RAUH$(Rd L$H0HH?UH$@ D$H$Hp HH$HP(H HL$H$Q;P/ I$Hy  H$HL$|$HP(L,H$hL$`L$pHxH$H$@HpH$PH$H HHtHH$@H8HtH/uHGP0H$@H$HHHH$H~eH$HHL$H$H$HL$PBu H=Q H$`H$H$H$@$H$Ht H/uHGP0I$H I$1 HYp&H5bJfx>H$HH$}DISH$HD$0HD$L$L$H$I$MwnAFAt4Iv8H|$0LT$8D\$(I$D\$(H$LT$8HL$0LT$8H RH$D\$(HAH$HL$8DŽ$H$jjH$8RSH$(Rd L$HD$`H0HD\$(LT$8vI$LT$(DH|$0@LT$(QI$H|$0LT$(LT$(/H\$0I$LT$(HHHH$I$HH@H$I$MLT$(H@H$H$LT$(pHx I$HH\$0I$HHH$Hl$ 1HH@(HHD$ H$@ D$TI$xHD$`H5I$HHIH$HP H@(HH HDŽ$`HDŽ$pH$hHI$HL$X0LT$(u%I$H|$0LT$(LT$(H=HD$hHD$Lt$pLL|$xHHD$(H$`HD$@H$HD$HDH|$4H$@E11E1HL$8f.HHt HH$@HHtH(u HPHR0H$@H$HHHH$H~2HHT$@Ht$HH$H$H$HH|$8$LL9|$J4AH;D$(taMcJH)HD$ H$I}HHH$@IuH$HIE|$H$PHcT$T9F@HT$XMcfDH|$0HD$`ЅHD$hLt$pL|$xHtHH$Ht H/uHGP0I$H|$0 GLT$8H RH$D\$(HAH$HL$8DŽ$H$jjH$8RSH$(Rd L$HD$`HH0HD\$(I$HD@uI$HLT$8MtI/u IGLP0H$Ht H/uHGP0I$H|$0E1 =裒l$ H$Lt$8HIv8H+I$Iw8H$ 1LL1Ah$$H$I$PfHIw&LH5GE1H81Iv8H}AHPH $H$H$HH$I$jjH$8RAUH$(Rd L$H0HH1A@$$I$H$P;x>{H$HH$HD$0KI$=HPHH$I$HL8L$I1MH=YHHt-HH5rH+HH,&vHCHP0H=&`HD$@Lt$HL|$H8H8+E1I$I~ DHyI$I~ DHyI$I~ DHI$|$hHHD$0HcD@Ht&H LH5H81訄HHD$HH HCHP0HD$0MH$A~Y$$I$PL$ISHRt&-LH5+H81HI$HE1H$E11HxHJ jDjIH$ZYH1I$LT$8=HD\$(PD\$(LT$8HD$0H$HD$0LMHmHs&A-LH yH56H81DHcT$HD$@WH:s&H5sH8諎!H$`H$H$HH$@$HH衅视LT$(HD$h1H|H/uHGP0HHuHT$8H5Hs&H81mhHT$8H5H$`1ɾHL$H% ATHIHUHH5:SHHdH%(HD$1IH$.auBH$Ht!HL$dH3 %(u-H[]A\LHH1迉ff.@ATHIHUHH5SHHdH%(HD$1IH$`uBH$Ht!HL$dH3 %(u-H[]A\LHH}1ff.@ATHIHUHH5 SHHdH%(HD$1IH$_uBH$Ht!HL$dH3 %(u-H[]A\1LHHfD1ff.@thtdAUIATIUSHtuN@t߃?ua@t ߁uq@t1H[]A\A]1DIȉHly@MLHUyMLH>衦p MLH y^AUATUSH8dH%(HD$(1D$HD$ u!1HL$(dH3 %(H8[]A\A]ÉHI~AŅtHtW11LD$ LH賨xSHt$ HL$DkH|$ HtH/uHWD$ R0D$ x*&tAHH|$ Ht H/uHGP0H$HAD$(H&a& HjH$@QH$HQt$8VHAT$|$DHD$PH0HE1AE1fDHD$ E1E1H`&H;HHpHH@HI9L\$LML$ApL$H8HT$XH$$L$LtH!`&H|$ H T$~MD$1H$0DhHIIuIHH0Ht$H;K&tHL$ALLIH@HfL\$@L|$0H\$8HI&H|$L\$0HHT1H|$(HL$(H$0L\$0~fIHRHTHH9uHcI&1HH|$HXLH@I&1H|$HxHH&I&HHLt$LLIHH&H@LLt$IHH&HHH|$IHH&H0u!HH&H|$HH=HD$(L|$0L|$hH\$8H\$`LHLLAH|$ՅuHD$(L|$0H\$8HtHZHCH&H|$H HGP0HMwMM/ANAU9IGp9~ AE@u t|99sIGP~ @@]MwANtB9IHx H~G&Iv H)IGMw@@A#F@M/LL_fH0G&AuI} HAvI~ HH G&HHNA}7IU8HcR HA~IF8Hc@ H[H9xIFI9EbMoMwLLeH{F&AvI~ HAuI} HHXF&HHiA~RIV8HcR H9A}"IE8Hc@ HH9IEI9FH$0H;F&t!HtHL$E1IwL#H$H$L胃fD1L$LLd$HME1Dt$@H$0L$0Ht$EH|$HE)HD$H(E&MH\$XH|$@H uLHD$Dl$PMaD$t Ix~ @@H$8HIHD&J@H0Lt 1HJ H~E1E1RjPH$HAIGAYAZHH$0H;xE&HHED&L|$0H\$8H|$H T$(T$HcL0HHD&|$8HL|$HAHt$8jjjSL$@T$xL$HD$@H0H"HC&H|$HI8WL|$0L|$hH\$8H\$`HD$(D$t (M/AUL9AE@ IGHt)9HHƃ@@H$@HHC&H8F@ALAt EAHN VE1HjAPE1H$PAIG_AXHH$0HH;C&D#VHD$8PHrB&I~ Iu HM7tMoAF@A#E@AVHB&H5AH8q]IGH9IMHIE(H-H2IEI9F'IV(HHp HA&I} HM/t^IG@@A#E@tOMwAF8AU9HtA&I} Iv HM/tMwAF@A#E@AUAU)Hp H+A&I} HM/tZIGAU@#P@tJAUHH@&H|$H IXH@&H5AH8\&A}[IGzH@&I} Iv HM/tMwAF@A#E@'IGAUpH9HIFI9EH9IEI9F*H|$ wH9IE(H1IV(H1HIF(H1IU(H1H[ff.AWAVIAUATUSHHhH4$dH%(H$X1GHD$H~)HHD$XHT$PH HHHH9uH$LD$HLHH5-ŅLl$HMK~G1Ld$P@I&H8NHmu HEHP0k;k}*HcH|PHt H/uHGP09kE1rfDLd$PH4$LHLADžDkE1DEGK&HHL$0HH$E1HPH9T$0HD$E@DcEaE1L$PL=@H;-1>&CLcL$1EJTPHLHXHsHmuHUHD$HR0HD$HwJ|PH/uHWHD$R0HD$JPDcIE9CK,DH_HH|PHq<&H`fDS1~>IMtIID9}8BD-HH9}Ht$HT$IH|LvHT$IFD9|MI/IGLP0fDHmuHUD$HR0DcD$HHDPJP SJtP11HEHmH$E1HPH;T$0HT$0H5߃&LHT$LHT$HHD$H@IcE1MAu(L$PQH7&H5ϔH8/S6IcRIŋC H$P1Ht$DHL$HITH9CDcMtnH5 &LKIcHt$0HH;$8&H$HD$I/IGT$LE1LL$P0LL$T$H$E1HPHD$EH|$LE1ZH$PxT$LL$:QLL$T$IHH5b&HDD$MA_AG4HcAGH$ILJIG HD$EoIG(HD$AoIG@D$(IGPAG0H4IHFIHIH|LDHD$ HIGXIG`Mg8IGH>IHIcW1HH8IGhALJIGpIGxILJILJML>HxH=IHt LHqFH<d=H$HIcIGhHB=H<IGp1=IcIGxH =IpIIx HAE1< uAIcA< t< tD$ D$,\$,A9_^<(fDAIcA4@ t@ t1fDD$ ID$@)@F<}F<vv@_tpHH<$ @MDHH,&H5?H81;I/DE1H8L[]A\A]A^A_8H<$?L $EglE1LEHHDd$(HAHMEHLfE8HDHAHT$e;D$AVT$HT$uHHcT$IGxD @AIcA<u@ t @ uDAIcA4@ t@ t@,t @)8@,tA4XAIcA< t< t<)uHc@AID;D$(HH$HHIcHHAGl&@H9*&EȉE1 H5UH8199fDH8[]A\A]A^A_7DHcD$,IWpAL$,IH) IcA\$,< t < ufDAIcA< t< t\$,A;_tA;_u$A\$\$ fH[@<,AIcA< t< u@AIcA< t< tf.IGLP0A<-AEHA<>AIcA< uAIcA< t< tYHD$,A;GHct$ IxHH9IGxuAGhH<$HHIc~H4IHAVM~1HcЃI ԋIA A9FsHT$MLLCD$t;Ls8HmtD$H[]A\A]A^A_fHEHP0@I~`H8H1HBIHDAVI}LYxI}(t}MmMu܅u L,%(MtgD$SfD1%fDKHcЃA A9FH#&H5H8>D$DuIc~H3IE(ANMtX~,1fIE(HcʃI4H4IE(HHAN9AM =D$D$1҅f.IE(HcʃHIE(HHAN9H"&H5H8&>D$=/D$+o\$D$Z2f.GB2ffZG.2ff.HGHxfH*2DHƒfHH H*X1ffH*G1ff.fHGHxfH*1DHƒfHH H*X1ffH*Gm1ff.fGfH*K1ff.f*G.1ff.Gf* 1ff.Gf*0ff.Gf*0ff.Gf*0ff.H=A&SHtH5[7H=ɂ;H5ȂHH"8H+HH&uHCHP0H=&ff.@SHHxk\$D$H[0@H1[SHCxC[/@1[ff.SHxfZC[/1[ff.H9Hc8H8fH8f8@88H(dH%(HD$1oHD$H\$D$;D$$>xZ$f/v of/wHD$dH3%(uDH(T,@HD$dH3%(u'H,H(8f1HT$dH3%(uH(t6@H(GdH%(HD$1HD$HV:D$D$xaD$f/v nf/w#HD$dH3%(uJH(+f.HD$dH3%(u'H,H(B7f1HT$dH3%(uH(5@H(fdH%(HD$1HD$ZGH9D$D$x]D$f/v %nf/wHD$dH3%(uFH(*fDHD$dH3%(u'H,H(6f1HT$dH3%(uH(4@H(dH%(HD$1oHD$H\$D$8D$f/pv vmf/w HD$dH3%(u.H('*HD$dH3%(uH,H(5]4ff.fHGdH%(HD$1HH88$f/ۀv lf/wHD$dH3%(u)H)fHD$dH3%(uH,HB53ff.fHfdH%(HD$1HZGH7$f/Gv Mlf/wHD$dH3%(u-H(fDHD$dH3%(uH,H453DH3H+fDHdH%(HD$13H6$f/v kf/wHD$dH3%(u(HQ(HD$dH3%(uH,H42ff.fHHH9v T&@3ff.HHH9tHH9t3S4HHH9v %@k3ff.AVAUIATUH-&SHHHEHH9N/AąHEHSHxPH9HH#/HEfHf/:~HEHHHLHXH+Au&HCHP0foKE1A)MfoS A)U[D]A\A]A^DH{HEHpXH9t.tkHEH{IƋxHEt4HELLHI.uIFLP0[D]A\A]A^I.u IFLP0A_ATff.fHgt NЉHff.SHH0dH%(HD$(1HxP,$z-u5l$1EHL$(dH3 %(uLH0[fDظc(H¸HuH&HHH@PH@`PH/SHH@dH%(HD$81Ht$jt-uXH&HHL$8dH3 %(H@['H1HuHB&HHH@PH@`P@l$Hl$0<$&H&1|$ZYHHH0,$xg.SHHPdH%(HD$H1Ht$ t-uXH&HHL$HdH3 %(uzHP[&H1HuHb&HHH@PH@`P8l$ H=&1H|$l$0H<$H0l$x,$x v-fDSHHPdH%(HD$H1Ht$ t-uXH&HHL$HdH3 %(u~HP[#&H1HuH&HHH@PH@`P0l$ Hm&1H|$l$0HH<$0l$x,$x r-fAVAUIATUH-&SHHHEHH9^*AąuHEHSHxPH9HH7*u{HEfHf/RyHEHHHLH`H+AuHCHP0oKE1A)M[D]A\A]A^H{HEHpXH9t)tkHEH{IƋxHEt4HELLHI.uIFLP0[D]A\A]A^I.u IFLP0A]ARff.fHwOHSHH dH%(HD$1HHHH+AuHCHP0I.u IFLP0AgA\HGOHSHHdH%(HD$1H x01ff.$EHL$dH3 %(u6H[@SH¸HuH&HHH@PH@`PHwSHH dH%(HD$1Ht$zt-uXHq&HHL$dH3 %(u}H [H1HuH2&HHH@PH@`P@H&D$1fTNHD$HH0D$@sSHH dH%(HD$1Ht$t-uXH&HHL$dH3 %(uuH [H1HuHb&HHH@PH@`P8HA&D$1HD$HH0D$@{ff.SHH dH%(HD$1Ht$t-uXH&HHL$dH3 %(u}H [#H1HuH&HHH@PH@`P0Hq&D$1fWLHD$HH0D$@sAVAUIATUH-&SHHHEHH9^AąuHEHSHxPH9HH7u{HEfHf/RfHEHHHLH`H+AuHCHP0CE1AE[D]A\A]A^fDH{HEHpXH9ttkHEH{ IƋxHEt4HE LLHI.uIFLP0[D]A\A]A^I.u IFLP0A^ASff.fHwOHSHHdH%(HD$1Ht$:x61f.D$EHL$dH3 %(uAąuHEHSHxPH9HHusHEfHf/2?HEHHHLH`H+AuHCHP0CE1fAE[D]A\A]A^H{HEHpXH9ttkHEH{IƋxHEt4HELLHI.uIFLP0[D]A\A]A^I.u IFLP0AdAYDHOHSHHdH%(HD$1Ht$Jt-uXHQ%HHL$dH3 %(ufH[H1HuH%HHH@PH@`PPH%\$1HHH0fXf.SHHdH%(HD$1Ht$x&1f|$HL$dH3 %(u7H[DH¸HuHW%HHH@PH@`PHff.@SHHdH%(HD$1Ht$t-uXH%HHL$dH3 %(ukH[SH1HuH%HHH@PH@`P@D$11)ЉH%HHH0fXEDSHHdH%(HD$1Ht$:t-uXHA%HHL$dH3 %(udH[H1HuH%HHH@PH@`P8H%\$1HHH0fXff.SHHdH%(HD$1Ht$zt-uXH%HHL$dH3 %(ufH[H1HuHB%HHH@PH@`P0H!%\$1HHH0fXf.AVAUIATUH-%SHHHEHH9AąuHEHSHxPH9HHusHEfHf/:HEHHHLH`H+AuHCHP0CE1AE[D]A\A]A^ÐH{HEHpXH9tjtkHEH{IƋxHEt4HELLHI.uIFLP0[D]A\A]A^I.u IFLP0AcAXDHOHSHHdH%(HD$1Ht$Jt-uXH1%HHL$dH3 %(ueH[H1HuH%HHH@PH@`PPH%\$1HHH0X{ff.SHHdH%(HD$1Ht$x&1|$HL$dH3 %(u8H[fDH¸HuH7%HHH@PH@`PHff.@SHHdH%(HD$1Ht$t-uXH%HHL$dH3 %(ucH[3H1HuH%HHH@PH@`P@H%\$1HHH0X-ff.fSHHdH%(HD$1Ht$:t-uXH!%HHL$dH3 %(ucH[sH1HuH%HHH@PH@`P8H%\$1HHH0Xmff.fAVAUIATUH-%SHHHEHH9AąuHEHSHxPH9HHusHEfHf/5HEHHHLH`H+AuHCHP0CE1AE[D]A\A]A^ÐH{HEHpXH9t tkHEH{IƋxHEt4HELLHI.uIFLP0[D]A\A]A^I.u IFLP0AcAXDHOHSHHdH%(HD$1Ht$Jt-uXH%HHL$dH3 %(ueH[#H1HuH%HHH@PH@`PPHq%\$1HHH0Xff.SHHdH%(HD$1Ht$x&1|$HL$dH3 %(u8H[fDkH¸HuH%HHH@PH@`PHff.@SHHdH%(HD$1Ht$t-uXH%HHL$dH3 %(ujH[H1HuHB%HHH@PH@`P@D$11)ЉH%HHH0XfDSHHdH%(HD$1Ht$:t-uXH%HHL$dH3 %(ucH[H1HuH%HHH@PH@`P8Ha%\$1HHH0X ff.fSHHdH%(HD$1Ht$zt-uXH%HHL$dH3 %(ueH[SH1HuH%HHH@PH@`P0H%\$1HHH0XKff.SHHt?Ht:HHHH@H@8tH[HָHHDH3[@HtH[f.KfSHHt?Ht:HHHH@H@8tH[HָHHDH3[@HtH[f.fSHӅt8t4@Dž@8t[ָD3[t [@{fSHft?ft:DƙAf@f@8tf[ָDf3[ft 1f[@SH@t?@At6@DƙA@@@@8t[@օAD@3[@t [fDSHHdH%(HD$1Ht'uRHC%HHL$dH3 %(ueH[ÐH1HuH %HHH@PH@`P0H$H%1HHHH0HXff.fSHHtGHHuHyHH9tAH[@HHH@H@8tHHHHE@H[f{HH[ff.SHHdH%(HD$1Ht'uRH%HHL$dH3 %(ueH[Ð[H1HuH%HHH@PH@`P0H$H%1HHHH0HXMff.fSHHtGHHuHyHH9tAH[@HHH@H@8tHHHHE@[H[f;HH[ff.SHHdH%(HD$1Ht$t-uXH%HHL$dH3 %(uiH[H1HuH%HHH@PH@`P0\$HX%1HHH0XSHӅt8uy 9t7[@Dž@8tHEܐ+[ [SHHdH%(HD$1Ht$t-uXH%HHL$dH3 %(ujH[H1HuHb%HHH@PH@`P0\$nH7%1HHH0XfDHOHFHFH9G8AWAVAUATUSHL%%I$H;BHHH` LkL;-c%L;-% L;- % L;-% L;-m% L;-9% L;-}% L;-% L;- % L;-% L;-%u L;-W%upHuLyuEI$H)I$HD$)1f/D$ 1H[]A\A]A^A_1L5%M;ntH%L;hrH%H@I9M}IG@Ht>LH5.%IHtx1M9ImuIUD$LR0D$n@IH=$Ht4LHHD$AHT$IH*u HBHP0MuULkI@ATIUHSHHdH%(HD$1HFH@`HtHH9P(t |u0Ht$Hx Ht$HJtMt(HY%HHL$dH3 %(H[]A\H1HuH%HH@PgL;%!%uhT$L$t[tWE@tItu0H%HH@H@`LHHP(HDH%1HHH0HXH'%H5H81 ff.ATIUHSHHdH%(HD$1HFH@`HtHH9P(t u0Ht$Hx Ht$H*tMt(H%HHL$dH3 %(H[]A\ H1HuHz%HH@PoL;%%ufD$fT$ftaft\Ef.ftHҨtfu7f.H %HH@H@`LHHP(@DH%1HHH0HfXH~%H5_H81cATIUHSHHdH%(HD$1HFH@`HtHH9P(t HHH-{%1HEHH0HT$1PHCHEHH0HT$PHC H!%HHL$dH3 %(HH([]H%HH@H@`HHP HKHu.H%HH@PfDHtH/u HGP0fD1|D$t$<$fH+uHCH1P0D$@UHSHH(dH%(HD$1HFH@`HtHH9t Ht$H x Ht$Hlte`XD$T$8Ѝ BˆL$8s BÅH%1HHH0HtT$PHq%HHL$dH3 %(H([]f.H9%HHHH@H@`@H1HuH %HHHH@PH@`DHL$HT$ Ht$H=uWxa|$ Ht$HL$D$$AH|$uHH/HGP0HtH/uHGP0f.14@UHSHH(dH%(HD$1HFH@`HtHH9Pt Ht$Hx Ht$H{t\oVD$T$)шL$8 @ÅH%1HHH0HtT$PH%HHL$dH3 %(H([]fHY%HHHH@H@`PH1HuH*%HHHH@PH@`P@;f?ÅFHL$HT$ Ht$H=Ux]|$ Ht$HL$D$0?H|$uHH/HGP0HtH/u HGP0fD1D@UHSHH(dH%(HD$1HFH@`HtHH9Pt !Ht$H,x Ht$HtdTD$T$ˆD$=.>ÅH%1HHH0HtT$PfH%HHL$dH3 %(H([]f.HY%HHHH@H@`P軾H1HuH*%HHHH@PH@`P@;3fDHL$HT$ Ht$H=Sxa|$ Ht$HL$D$4=H|$uHH/HGP0HtH/uHGP0f.1D@UHSHH8dH%(HD$(1HFH@`HtHH9t "Ht$H x Ht$HlteRT$L$f1fD$y f1(+<ÅH%1HHH0HtT$fPDH%HHL$(dH3 %(H8[]f.HY%HHHH@H@`@軼H1HuH*%HHHH@PH@`DHL$ HT$Ht$H=3Qxi|$Ht$ HL$D$D;H|$ u-HH/HGP0@ӿHtH/u HGP0@1Lff.UHSHH8dH%(HD$(1HFH@`HtHH9Pt !Ht$H x Ht$HktdPT$L$)f1fD$y f1x(:ÅH%1HHH0HtT$fP fH%HHL$(dH3 %(H8[]f.HY%HHHH@H@`P軺H1HuH*%HHHH@PH@`P@HL$ HT$Ht$H=3 Oxa|$Ht$ HL$D$D9H|$ uHH/HGP0HtH/uHGP0f.1T@UHSHH8dH%(HD$(1HFH@`HtHH9Pt 1Ht$Hx Ht$H{tdND$T$fD$=88ÅHǨ%1HHH0HtT$fP fH%HHL$(dH3 %(H8[]f.Hi%HHHH@H@`P˸H1HuH:%HHHH@PH@`P@K9fDHL$ HT$Ht$H=3 Mxa|$Ht$ HL$D$D7H|$ uHH/HGP0HtH/uHGP0f.1T@UHSHH8dH%(HD$(1HFH@`HtHH9P t 1yHt$ Hx Ht$H{y@LL$f|$ fAfAA8t DEfDD$HT$ 6ÅtgHL$ HT$Ht$H=,LL|$Ht$ HL$D$5H|$  HtH/uHGP0HHH-#%1HEHH0HT$1fPHCHEHH0HT$fPHC fH%HHL$(dH3 %(HH8[]H%HH@H@`HHP HHu.H_%HH@PfDHtH/u HGP0fD1|k1t$|$ fD$YDH+uHCH1P0Dļ@UHSHH8dH%(HD$(1HFH@`HtHH9t Ht$Hx Ht$H teJD$T$f9Ѝ BfL$f9s~3ÅH8%1HHH0HtT$fPH%HHL$(dH3 %(H8[]f.H٣%HHHH@H@`@;H1HuH%HHHH@PH@`DHL$ HT$Ht$H=Ixa|$Ht$ HL$D$2H|$ uHH/HGP0HtH/uHGP0f.1Ժ@UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$Hx Ht$HtdHD$T$)fL$f91ÅHM%1HHH0HtT$fPH!%HHL$(dH3 %(H8[]f.H%HHHH@H@`PKH1HuH%HHHH@PH@`P@˵0Å8HL$ HT$Ht$H=Gx]|$Ht$ HL$D$0H|$ uHH/HGP0HtH/u HGP0fD1Ը@UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$Hx Ht$HtdFD$T$fD$=/ÅHL%1HHH0HtT$fPH!%HHL$(dH3 %(H8[]f.H%HHHH@H@`PKH1HuH%HHHH@PH@`P@˳4fDHL$ HT$Ht$H=Exa|$Ht$ HL$D$.H|$ uHH/HGP0HtH/uHGP0f.1Զ@UHSHH8dH%(HD$(1HFH@`HtHH9t Ht$Hݺx Ht$ H<t]DT$L$ 1‰D$y1-ÅHO%1HHH0HtT$P@H)%HHL$(dH3 %(H8[]fH%HHHH@H@`@[H1HuHʝ%HHHH@PH@`DHL$ HT$Ht$H=5Cxi|$Ht$ HL$D$,H|$ u-H H/HGP0@sHtH/u HGP0@1ff.UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$Hx Ht$ HKtdBT$L$ )1‰D$y 1x袰+ÅH\%1HHH0HtT$PfH1%HHL$(dH3 %(H8[]f.H%HHHH@H@`P[H1HuHʛ%HHHH@PH@`P@HL$ HT$Ht$H=5Axa|$Ht$ HL$D$*H|$ uHH/HGP0HtH/uHGP0f.1@UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$Hx Ht$ H[tl/@HcT$ HcD$HºD$HHH9)ÅH_%1HHH0HtT$P@H9%HHL$(dH3 %(H8[]fH %HHHH@H@`PkH1HuHڙ%HHHH@PH@`P@AfDHL$ HT$Ht$H=5?xa|$Ht$ HL$D$(H|$ uHH/HGP0HtH/uHGP0f.1@UHSHH8dH%(HD$(1HFH@`HtHH9P t Ht$Hx Ht$H[+>t$|$HT$ Yt$|$HT$'ÅHHRH-K%1HEHH0H<T$ 1PHCHEHH0HT$PHC DH%HHL$(dH3 %(HH8[]H%HH@H@`HHP HHH%HH@PfHL$ HT$Ht$H==xa|$Ht$ HL$D$&H|$ u#HH/HGP0@HtH/u HGP0fD1fH+uHCH1P0褮@UHSHH8dH%(HD$(1HFH@`HtHH9t ~Ht$H該x Ht$ HtQ;t$ |$HT$ %ÅH$%1HHH0HtT$P H%HHL$(dH3 %(H8[]f.Hɕ%HHHH@H@`+H1HuH%HHHH@PH@`댐HL$ HT$Ht$H=;xa|$Ht$ HL$D$$H|$ uHH/HGP0HtH/uHGP0f.1Ĭ@UHSHH8dH%(HD$(1HFH@`HtHH9t Ht$Hmx Ht$ H̭te:D$ T$9Ѝ B‰L$9s胨#ÅH=%1HHH0HtT$Pf.H%HHL$(dH3 %(H8[]f.Hٓ%HHHH@H@`@;H1HuH%HHHH@PH@`DHL$ HT$Ht$H=9xa|$Ht$ HL$D$"H|$ uHH/HGP0HtH/uHGP0f.1Ԫ@UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$H|x Ht$ H۫t\8D$T$ )щL$9!ÅHQ%1HHH0HtT$PfDH)%HHL$(dH3 %(H8[]fH%HHHH@H@`P[H1HuHʑ%HHHH@PH@`P@ۥ!ÅDHL$ HT$Ht$H=!7x]|$Ht$ HL$D$ H|$ uHH/HGP0HtH/u HGP0fD1@UHSHH8dH%(HD$(1HFH@`HtHH9Pt Ht$H茨x Ht$ Htd6T$ D$HºD$H9ÅH[%1HHH0HtT$PH1%HHL$(dH3 %(H8[]f.H%HHHH@H@`P[H1HuHʏ%HHHH@PH@`P@ۣ5fDHL$ HT$Ht$H=%5xa|$Ht$ HL$D$H|$ uHH/HGP0HtH/uHGP0f.1@UHSHHHdH%(HD$81HFH@`HtHH9t Ht$H蝡x Ht$ Hte 4HT$HL$ HH1HD$(y H1'ÅHY%1HHH0HtHT$(HP@H1%HHL$8dH3 %(HH[]f.H%HHHH@H@`@[H1HuHʍ%HHHH@PH@`DHL$0HT$Ht$H=53xi|$Ht$0HL$ D$ H|$0u-HH/HGP0@sHtH/u HGP0@1ff.UHSHHHdH%(HD$81HFH@`HtHH9Pt Ht$H蜟x Ht$ Htd2HT$HL$ HH)H1HD$(y H1x蛠ÅHU%1HHH0HtHT$(HP H1%HHL$8dH3 %(HH[]f.H%HHHH@H@`P[H1HuHʋ%HHHH@PH@`P@HL$0HT$Ht$H=51xa|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/uHGP0f.1@UHSHHHdH%(HD$81HFH@`HtHH9Pt Ht$H謝x Ht$ H t\/0HD$HD$ HD$(ÅHs%1HHH0HtHT$(HPfDHI%HHL$8dH3 %(HH[]fH%HHHH@H@`P{H1HuH%HHHH@PH@`P@=fDHL$0HT$Ht$H=E/xa|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/uHGP0f.1@UHSHHHdH%(HD$81HFH@`HtHH9P t Ht$H輛x Ht$H";.Ht$H|$HT$ 'Ht$H|$HT$(胼ÅHH^H-W%1HEHH0HHHT$ 1HPHCHEHH0HHT$(HPHC DH%HHL$8dH3 %(HHH[]H%HH@H@`HHP HHH%HH@PfHL$0HT$ Ht$H=-xa|$ Ht$0HL$D$H|$0u#HH/HGP0@HtH/u HGP0fD1 fH+uHCH1P0褞@UHSHHHdH%(HD$81HFH@`HtHH9t ~Ht$HYx Ht$ H踚tY+Ht$ H|$HT$(ȽÅH"%1HHH0HtHT$(HPDH%HHL$8dH3 %(HH[]fHɅ%HHHH@H@`+H1HuH%HHHH@PH@`딐HL$0HT$Ht$H=+xa|$Ht$0HL$ D$ H|$0uH H/HGP0HtH/uHGP0f.1 Ĝ@UHSHHHdH%(HD$81HFH@`HtHH9t 袾Ht$HMx Ht$ H謔te*HD$ HT$H9H HBHL$(H9s|ÅH6%1HHH0HtHT$(HP H%HHL$8dH3 %(HH[]f.Hك%HHHH@H@`@;H1HuH%HHHH@PH@`DHL$0HT$Ht$H=)xa|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/uHGP0f.1Ԛ@UHSHHHdH%(HD$81HFH@`HtHH9Pt 豼Ht$H\x Ht$ H軒td(HD$HT$ HH)HL$(H9ÅHK%1HHH0HtHT$(HPfDH!%HHL$8dH3 %(HH[]f.H%HHHH@H@`PKH1HuH%HHHH@PH@`P@˕Å:HL$0HT$Ht$H='x]|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/u HGP0fD1Ԙ@UHSHHHdH%(HD$81HFH@`HtHH9Pt 豺Ht$H\x Ht$ H軐t\&HD$Hd$ HD$(ÅHT%1HHH0HtHT$(HPH)%HHL$8dH3 %(HH[]fH%HHHH@H@`P[H1HuH%HHHH@PH@`P@ۓHt$H ox Ht$ HhptYL$ D$1D$OÅHV%1HHH0HtT$PHV%HHL$(dH3 %(H8[]fHV%HHHH@H@`fH1HuHZV%HHHH@PH@`딐{dD$:fDHL$ HT$Ht$H=YxY|$Ht$ HL$D$\H|$ uHH/HGP0HtH/u HGP0f1tm@UHSHHHdH%(HD$81HFH@`HtHH9Pt QHt$H,hx Ht$ HitTHt$ H|$HT$( fÅHT%1HHH0HtHT$(HP HT%HHL$8dH3 %(HH[]f.HT%HHHH@H@`PdH1HuHjT%HHHH@PH@`P@HL$0HT$Ht$H=xa|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/uHGP0f.1k@UHSHHHdH%(HD$81HFH@`HtHH9Pt qHt$Hbx Ht$ H{ctlHD$HL$ HH1HHT$(tÅHS%1HHH0HtHT$(HPfDHR%HHL$8dH3 %(HH[]fHR%HHHH@H@`P cH1HuHzR%HHHH@PH@`P@Ht{HD$(4DHL$0HT$Ht$H=xi|$Ht$0HL$ D$ |H|$0u-HH/HGP0@`{HtH/u HGP0@1i@ATUHSHH@dH%(HD$81HFH@`HtHH9P t _WHt$H `x Ht$ HiaWHl$ HHL$1HHHD$(HH1HHPÅtbHL$0HT$Ht$H=(o?|$Ht$0HL$ D$ H|$0HtH/u HGP0.kHHL%kP%1I$HH0H HT$(1HPHCI$HH0HHhHC fDHP%HHL$8dH3 %(HH@[]A\DHO%HH@H@`HHP H;`Hu.HO%HH@PfDHtH/u HGP0fD1|]HL$Hl$ HD$(Ht HZHu ]V1LH+uHCH1P0$f@UHSHHHdH%(HD$81HFH@`HtHH9t ΈHt$Hy]x Ht$ H^ta,HL$ HHD$1HHD$(ÅHiN%1HHH0HtHT$(HP@HAN%HHL$8dH3 %(HH[]f.H N%HHHH@H@`k^H1HuHM%HHHH@PH@`댐[HD$(.DHL$0HT$Ht$H=-xY|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/u HGP0f1d@UHSHHHdH%(HD$81HFH@`HtHH9Pt цHt$HVx Ht$ HWtT/Ht$ H|$HT$(ÅHuL%1HHH0HtHT$(HP HQL%HHL$8dH3 %(HH[]f.HL%HHHH@H@`P{\H1HuHK%HHHH@PH@`P@HL$0HT$Ht$H=Uxa|$Ht$0HL$ D$ H|$0uHH/HGP0HtH/uHGP0f.1c@UHSHHHdH%(HD$81HFH@`HtHH9Pt Ht$H|Px Ht$ HQtlOHD$HL$ HH1HHT$(ÅHJ%1HHH0HtHT$(HPfDHYJ%HHL$8dH3 %(HH[]fH)J%HHHH@H@`PZH1HuHI%HHHH@PH@`P@Ht{HD$(4DHL$0HT$Ht$H=Mxi|$Ht$0HL$ D$ H|$0u-HH/HGP0@W{HtH/u HGP0@1a@ATUHSHH@dH%(HD$81HFH@`HtHH9P t ߂WHt$HjNx Ht$ HOW9Hl$ HHL$1HHHD$(HH1HHÅtbHL$0HT$Ht$H=?|$Ht$0HL$ D$ H|$0HtH/u HGP0bHHL%G%1I$HH0H HT$(1HPHCI$HH0HHhHC fDHG%HHL$8dH3 %(HH@[]A\DHYG%HH@H@`HHP HWHu.H/G%HH@PfDHtH/u HGP0fD1|;UHL$Hl$ HD$(Ht HZHu UV1LH+uHCH1P0$t^@UHSHHHdH%(HD$81HFH@`HtHH9t NHt$HKx Ht$ H8MtaHL$ HHD$1HHD$(ZÅHE%1HHH0HtHT$(HP@HE%HHL$8dH3 %(HH[]f.HE%HHHH@H@`UH1HuHZE%HHHH@PH@`댐{SHD$(.DHL$0HT$Ht$H=txY|$Ht$0HL$ D$ \H|$0uHH/HGP0HtH/u HGP0f1t\@ATIUHSHH0dH%(HD$(1HFH@`HtHH9P(t L~u0Ht$HFx Ht$H*HtMt(H)D%HHL$(dH3 %(lH0[]A\{TH1HuHC%HH@PoL;%D%ub|$<NÅuXHC%1HHH0HnfhefHyC%HH@H@`LHHP(@DHL$ HT$Ht$H=|$Ht$ HL$D$H|$ uYHVH/LHGP0@\$|$LD$ LT$ ((Z% YHt H/uHGP01hZUHSHH8dH%(HD$(1HFH@`HtHH9Pt A|Ht$HDx Ht$HFtTt$|$HT$TVÅHA%1HHH0HtT$fP HA%HHL$(dH3 %(H8[]f.HA%HHHH@H@`PQH1HuHZA%HHHH@PH@`P@HL$ HT$Ht$H=xa|$Ht$ HL$D$tH|$ uHH/HGP0HtH/uHGP0f.1X@UHSHH8dH%(HD$(1HFH@`HtHH9P t azHt$ HBx Ht$H;Dt$|$ HT$RfD$mÅZHH]H-?%1HEHH0HGT$1fPHCHEHH0HT$fPHC @H?%HHL$(dH3 %(HH8[]HQ?%HH@H@`HHP HOHH?%HH@PfHL$ HT$Ht$H=nxa|$Ht$ HL$D$DH|$ u#HH/HGP0@HtH/u HGP0fD1 fH+uHCH1P04V@UHSHH8dH%(HD$(1HFH@`HtHH9t xHt$H@x Ht$HAtalH\$ t$|$HePfD$ŅH=%1HHH0HtT$fPDH=%HHL$(dH3 %(H8[]f.HI=%HHHH@H@`MH1HuH=%HHHH@PH@`댐HT$Ht$HH=`x[|$Ht$ HL$D$6H|$ uHH/HGP0HtH/u HGP0@1 LTff.UHSHHHdH%(HD$81HFH@`HtHH9t "vHt$H>x Ht$ H?tm|$E|$ D$ EXD$ RfD$"!ÅH;%1HHH0HtT$"fPH;%HHL$8dH3 %(HH[]fHY;%HHHH@H@`@KH1HuH*;%HHHH@PH@`DHL$0HT$,Ht$(H=nxa|$,Ht$0HL$$D$$DH|$0uH H/HGP0HtH/uHGP0f.1 TR@UHSHHHdH%(HD$81HFH@`HtHH9Pt 1tHt$Htt|$C|$ D$ CL$ \(#PfD$")ÅH9%1HHH0HtT$"fPH9%HHL$8dH3 %(HH[]f.HY9%HHHH@H@`PIH1HuH*9%HHHH@PH@`P@HL$0HT$,Ht$(H=nxa|$,Ht$0HL$$D$$DH|$0uHH/HGP0HtH/uHGP0f.1TP@UHSHHHdH%(HD$81HFH@`HtHH9Pt 1rHt$H:x Ht$ H <tt|$A|$ D$ AYD$ *NfD$"0ÅH7%1HHH0Ht T$"fPf.H7%HHL$8dH3 %(HH[]f.HY7%HHHH@H@`PGH1HuH*7%HHHH@PH@`P@HL$0HT$,Ht$(H=nxa|$,Ht$0HL$$D$$DH|$0uHH/HGP0HtH/uHGP0f.1TN@UHSHHHdH%(HD$81HFH@`HtHH9t .pHt$H8x Ht$ H:tq|$?|$ D$ ?L$ ^( LfD$"&ÅH5%1HHH0HtT$"fP H5%HHL$8dH3 %(HH[]f.HY5%HHHH@H@`EH1HuH*5%HHHH@PH@`댐HL$0HT$,Ht$(H=nxa|$,Ht$0HL$$D$$DH|$0uHH/HGP0HtH/uHGP0f.1TL@ATAUHSHHdH%(HD$1Fnt2HS4%HHL$dH3 %(1H[]A\f.Ht$H6x Ht$H7t|;y7rDH1HuH3%DHHHH@PfAHt$|$JcH>FH 3%H1HVHtlHBHFHH%@CѐJf?fPf[KfH 3%HHPHHHH@HJff.fUHSHHHdH%(HD$81HFH@`HtHH9P t l Ht$Hl0x Ht$H12 \$d$((\$ d$B\$ fd$.(.\^z)/D$/8t(\ ||Xt$.z{(%`|(T.\/ >X,|H1%HHL$8dH3 %(H HH[]Hi1%HH@H@`HHP HAH*H;1%HH@PfD$D$ yÅtcHL$0HT$,Ht$(H=|$,Ht$0HL$$D$$CH|$0HtH/u HGP0@VKHHH-0%1HEHH0HD$ 1@HCHEHH0Hl$hHC fHtH/u HGP0fD1|^f/{f/T$=]|$fD,f%\$f$$f.f(f.\^z6f/$f/8tf(\ yX4$f.zfxf(% yf(fTf.\f/ ~XxfH.%HHL$HdH3 %(H HX[]H-%HH@H@`HHP H;>H*H-%HH@Pf$D$8ÅtdHL$@HT$$Ht$ H= |$$Ht$@HL$D$贼H|$@HtH/u HGP0DGHHH--%1HEHH0HD$81@HCHEHH0H,$hHC HtH/u HGP0fD1|^ff/nwf/$=Qw<$H,f%vfUH*f(fT\f(fVH+nHCH1P0CUHSHHdH%(H$1HFH@`HtHH9P t e3Ht$PH x Ht$`Hu!\3l$`H l$p|$|$0<$|$ BH l$,$(zR<$8t <$ @z f.T$(D$(tVuf(fTf.D$D$|Ha*%HH$dH3 %(HHĘ[]ÐH)*%HH@H@`HHP H:H"H)%HH@Pf<$|$p8ÅtbHL$HHT$DHt$@H=]W|$DHt$HHL$@ATIUHSHH dH%(HD$1HFH@`HtHH9P(t _u0Ht$HOx Ht$HJQtUt(H%%HHL$dH3 %(^H []A\ 6H1HuHz%%HH@PfDL;%y&%uT$t4L$t*E@ttuDsŅuUH%%1HHH0H;X3H$%HH@H@`LHHP(DHL$HT$ Ht$H=̆=xW|$ Ht$HL$D$H|$uH]H/SHGP0GHt H/uHGP01HHH@HAD$8D$tHBHGHHf.D$8D$D$8D$D$8D$D$8D$D$8D$lUHSHHdH%(HD$1HFH@`HtHH9PXt Ht$Hx Ht$HtmtXD$L$1D$H?$HHH0HtT$PHL$dH3 %(udH[]ÐH$HH$HHHH@H@`PXKH1HuH$HHHH@PH@`PXoff.@UHSHHdH%(HD$1HFH@`HtHH9P`t AHt$HLx Ht$HtmtXD$L$1D$H$HHH0HtT$PHL$dH3 %(udH[]ÐH$HH$HHHH@H@`P` H1HuHz$HHHH@PH@`P`/ff.@UHSHHdH%(HD$1HFH@`HtHH9Pht Ht$H x Ht$HktmtXD$"D$1D$H$HHH0Ht T$PfHL$dH3 %(ulH[]fH$HHi$HHHH@H@`PhH1HuH:$HHHH@PH@`Phff.@UHSHHdH%(HD$1HFH@`HtHH9Ppt Ht$Hx Ht$H+tmtXD$2D$1D$H$HHH0Ht T$PfHL$dH3 %(ulH[]fHA$HH)$HHHH@H@`PpH1HuH$HHHH@PH@`Ppff.@UHSHHdH%(HD$1HFH@`HtHH9Pxt Ht$Hx Ht$HtmtXD$ D$1D$HB$HHH0Ht T$PfHL$dH3 %(ulH[]fH$HH$HHHH@H@`PxKH1HuH$HHHH@PH@`Pxoff.@ATAUHSHHdH%(HD$1Vt2Hc$HHL$dH3 %(WH[]A\f.Ht$H3x Ht$Ht|;y7H1HuH$DHHHH@PfH ɼ$H9HWHAwH5JcH>HHH@HAD$8D$tHBHGHHf.D$8D$D$8D$D$8D$D$8D$D$8D$lUHSHHdH%(HD$1HFH@`HtHH9PXt Ht$H|x Ht$HtmtXD$L$1fD$HN$HHH0HtT$fPDHL$dH3 %(udH[]ÐH$HH$HHHH@H@`PX[H1HuHʺ$HHHH@PH@`PXff.@UHSHHdH%(HD$1HFH@`HtHH9P`t QHt$HHHH@HAD$f9D$tHBHGHHf.D$f9D$fDD$f9D$fDD$f9D$fDD$f9D$fDD$f9D$kfDUHSHHdH%(HD$1HFH@`HtHH9PXt Ht$Hx Ht$H tmtXD$L$1fD$H^$HHH0HtT$fPDHL$dH3 %(udH[]ÐH!$HH $HHHH@H@`PXkH1HuHڲ$HHHH@PH@`PXff.@UHSHHdH%(HD$1HFH@`HtHH9P`t aHt$Hx Ht$HtmtXD$L$1fD$H$HHH0HtT$fPDHL$dH3 %(udH[]ÐH$HHɱ$HHHH@H@`P`+H1HuH$HHHH@PH@`P`Off.@UHSHHdH%(HD$1HFH@`HtHH9Pht !Ht$Hlx Ht$HtmtXD$f#D$1fD$H$HHH0HtT$fPHL$dH3 %(udH[]ÐH$HH$HHHH@H@`PhH1HuHZ$HHHH@PH@`Phff.@UHSHHdH%(HD$1HFH@`HtHH9Ppt Ht$H,x Ht$HKtmtXD$f3D$1fD$H$HHH0HtT$fPHL$dH3 %(udH[]ÐHa$HHI$HHHH@H@`Pp諿H1HuH$HHHH@PH@`Ppff.@UHSHHdH%(HD$1HFH@`HtHH9Pxt Ht$Hx Ht$H tmtXD$f D$1fD$H`$HHH0HtT$fPHL$dH3 %(udH[]ÐH!$HH $HHHH@H@`PxkH1HuHڭ$HHHH@PH@`Pxff.@ATAUHSHHdH%(HD$1vt2H$HHL$dH3 %(XH[]A\f.Ht$Hx Ht$Ht|;y7袽H1HuH$DHHHH@PfH $H9HWHAwH5)JcH>HHH@HAD$f9D$tHBHGHHf.D$f9D$fDD$f9D$fDD$f9D$fDD$f9D$fDD$f9D$kfDUHSHH(dH%(HD$1HFH@`HtHH9PXt Ht$ Hx Ht$H;tmtXL$D$ 1D$Hq$HHH0Ht T$PfHL$dH3 %(ulH([]fH1$HH$HHHH@H@`PX{H1HuH$HHHH@PH@`PXff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t qHt$ Hx Ht$HtmtXL$D$ 1D$H1$HHH0Ht T$PfHL$dH3 %(ulH([]fH$HH٩$HHHH@H@`P`;H1HuH$HHHH@PH@`P`_ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht 1Ht$ H\x Ht$HtmtXD$ #D$1D$H$HHH0Ht T$P@HL$dH3 %(ulH([]fH$HH$HHHH@H@`PhH1HuHj$HHHH@PH@`Phff.@UHSHH(dH%(HD$1HFH@`HtHH9Ppt Ht$ Hx Ht$H{tmtXD$ 3D$1D$H$HHH0Ht T$P@HL$dH3 %(ulH([]fHq$HHY$HHHH@H@`Pp軷H1HuH*$HHHH@PH@`Pp߾ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pxt Ht$ Hx Ht$H;tmtXD$ D$1D$Hs$HHH0Ht T$P@HL$dH3 %(ulH([]fH1$HH$HHHH@H@`Px{H1HuH$HHHH@PH@`Px蟽ff.@ATAUHSHHdH%(HD$1t2H$HHL$dH3 %("H[]A\f.HHx Ht$Ht|5y1贵H1HuH#$DHHHH@PH $H9HWHAwH5YJcH>HHH@HID$9$tHBHGHH#f.D$9$ѐD$9$D$9$뱐D$9$롐D$9$ff.UHSHH(dH%(HD$1HFH@`HtHH9PXt Ht$ H輻x Ht$HtmtXL$D$ 1D$H$HHH0Ht T$PfHL$dH3 %(ulH([]fHq$HHY$HHHH@H@`PX軳H1HuH*$HHHH@PH@`PXߺff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t Ht$ H|x Ht$HۻtmtXL$D$ 1D$Hq$HHH0Ht T$PfHL$dH3 %(ulH([]fH1$HH$HHHH@H@`P`{H1HuH$HHHH@PH@`P`蟹ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht qHt$ HHHH@HID$9$tHBHGHH#f.D$9$ѐD$9$D$9$뱐D$9$롐D$9$\ff.UHSHH(dH%(HD$1HFH@`HtHH9PXt 1HHx Ht$HmtotZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HH$HHHH@H@`PXH1HuHj$HHHH@PH@`PXff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t HHέx Ht$H-totZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐHq$HHY$HHHH@H@`P`軪H1HuH*$HHHH@PH@`P`߱ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht HH莬x Ht$HtotZH$H#D$1HD$Hs$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH1$HH$HHHH@H@`Ph{H1HuH$HHHH@PH@`Ph蟰ff.@UHSHH(dH%(HD$1HFH@`HtHH9Ppt qHHNx Ht$H譬totZH$H3D$1HD$H3$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH$HHٗ$HHHH@H@`Pp;H1HuH$HHHH@PH@`Pp_ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pxt 1HHx Ht$HmtotZH$H D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH$HH$HHHH@H@`PxH1HuHj$HHHH@PH@`Pxff.@ATAUHSHH dH%(HD$1t2H$HHL$dH3 %(XH []A\f.Ht$H賨x Ht$Ht|;y72H1HuH$DHHHH@PfH y$H9HWHAwH5JcH>HHH@HAHD$H9D$tHBHGHHf.HD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$kffDUHSHH(dH%(HD$1HFH@`HtHH9PXt AHHx Ht$HMtotZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HH$HHHH@H@`PX H1HuHz$HHHH@PH@`PX/ff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t HH计x Ht$H totZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HHi$HHHH@H@`P`ˢH1HuH:$HHHH@PH@`P`ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht HHnx Ht$H͡totZH$H#D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fHA$HH)$HHHH@H@`Ph苡H1HuH$HHHH@PH@`Ph诨ff.@UHSHH(dH%(HD$1HFH@`HtHH9Ppt HH.x Ht$H荠totZH$H3D$1HD$HC$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH$HH$HHHH@H@`PpKH1HuH$HHHH@PH@`Ppoff.@UHSHH(dH%(HD$1HFH@`HtHH9Pxt AHHx Ht$HMtotZH$H D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH$HH$HHHH@H@`Px H1HuHz$HHHH@PH@`Px/ff.@ATAUHSHH dH%(HD$1t2H#$HHL$dH3 %(XH []A\f.Ht$H蓜x Ht$Ht|;y7BH1HuH$DHHHH@PfH $H9HWHAwH5)JcH>HHH@HAHD$H9D$tHBHGHHf.HD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$kvfDUHSHH(dH%(HD$1HFH@`HtHH9PXt QHHx Ht$HmtotZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐHы$HH$HHHH@H@`PXH1HuH$HHHH@PH@`PX?ff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t HHΔx Ht$H-totZHL$H$1HHD$HЊ$HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HHy$HHHH@H@`P`ۚH1HuHJ$HHHH@PH@`P`ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht HH莓x Ht$HtotZH$H#D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fHQ$HH9$HHHH@H@`Ph蛙H1HuH $HHHH@PH@`Ph迠ff.@UHSHH(dH%(HD$1HFH@`HtHH9Ppt HHNx Ht$H譓totZH$H3D$1HD$HS$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH$HH$HHHH@H@`Pp[H1HuHʇ$HHHH@PH@`Ppff.@UHSHH(dH%(HD$1HFH@`HtHH9Pxt QHHx Ht$HmtotZH$H D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fHц$HH$HHHH@H@`PxH1HuH$HHHH@PH@`Px?ff.@ATAUHSHH dH%(HD$1&t2H3$HHL$dH3 %(XH []A\f.Ht$H賏x Ht$Ht|;y7RH1HuH$DHHHH@PfH $H9HWHAwH5QJcH>HHH@HAHD$H9D$tHBHGHHf.HD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$k膜fDUHSHH(dH%(HD$1HFH@`HtHH9PXt aHHx Ht$HMtotZHL$H$1HHD$H $HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HHɃ$HHHH@H@`PX+H1HuH$HHHH@PH@`PXOff.@UHSHH(dH%(HD$1HFH@`HtHH9P`t !HH讈x Ht$H totZHL$H$1HHD$H$HHH0HtHT$HPHL$dH3 %(udH([]ÐH$HH$HHHH@H@`P`H1HuHZ$HHHH@PH@`P`ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pht HHnx Ht$H͈totZH$H#D$1HD$H$HHH0Ht HT$HPfHL$dH3 %(ulH([]fHa$HHI$HHHH@H@`Ph諑H1HuH$HHHH@PH@`PhϘff.@UHSHH(dH%(HD$1HFH@`HtHH9Ppt 衺HH.x Ht$H荇totZH$H3D$1HD$Hc$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH!$HH $HHHH@H@`PpkH1HuH$HHHH@PH@`Pp菗ff.@UHSHH(dH%(HD$1HFH@`HtHH9Pxt aHHx Ht$HMtotZH$H D$1HD$H#$HHH0Ht HT$HPfHL$dH3 %(ulH([]fH~$HH~$HHHH@H@`Px+H1HuH~$HHHH@PH@`PxOff.@ATAUHSHH dH%(HD$16t2HC~$HHL$dH3 %(XH []A\f.Ht$H蓃x Ht$Ht|;y7bH1HuH}$DHHHH@PfH }$H9HWHAwH5yJcH>HHH@HAHD$H9D$tHBHGHHf.HD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$fDHD$H9D$k薔fDATAUHSHHdH%(HD$1膶t2H|$HHL$dH3 %(WH[]A\f.HH%zx Ht$H{t|5y1贌H1HuH#|$DHHHH@PH |$H9HWHAwH5JcH>HHH@HI1$/D$tHBHGHH#f.1$.D$E1$.D$E1D$/$1D$/$t@1$/D$\ATAUHSHH dH%(HD$1ִt2Hz$HHL$dH3 %(iH []A\f.Ht$Hsx Ht$HBut|;y7H1HuHqz$DHHHH@PfH Iz$H9HWHAwH5IJcH>HHH@HA1D$f/D$tHBHGHH f1D$f.D$ED1D$f.D$ED1D$f/D$D1D$f/D$zf1D$f/D$b%DATAUHSHH0dH%(HD$(1t2H#y$HHL$(dH3 %(XH0[]A\f.HHumx Ht$Hnt|5y1DH1HuHx$DHHHH@PH x$H9HWHAwH5JcH>HHH@HIl$,$1tHBHGHH#f.,$1l$EfD,$1l$EfD,$l$1fD,$l$1sl$,$1[vfDATAUHSHH dH%(HD$1ft2Hsw$HHL$dH3 %( H []A\f.Ht$Hgx Ht$Hbht|;y7蒇H1HuHw$DHHHH@PfAwHJcH>fHv$HHRHHHH@H;fL$D$.;51D$ /D$DtHev$HHPHHBH@HH@D$.D$zu1D$ .D$ED$.D$GA1D$ .D$Et@D$L$.1D$/D$ @D$L$.zOuM1D$/D$ L$D$.z/u-1D$ /D$1/1/ff.ATAUHSHH0dH%(HD$(1t2Ht$HHL$(dH3 %(!H0[]A\f.HH_x Ht$H`t|5y1H1HuHt$DHHHH@PAwHJcH>HIt$HHRHHHH@HKf $D$f.C=1D$f/D$@tHs$HHPHHBH@HH@$f.D$zu1D$f.D$EfD$f.D$GA1D$f.D$Es$L$f.1D$f/D$?$L$f.zOuM1D$f/D$ $D$f.z7u51D$f/D$1f/f.1f/}ff.fATAUHSHHPdH%(HD$H1ft2Hsr$HHL$HdH3 %(!HP[]A\f.HHXx Ht$ HYt|5y1蔂H1HuHr$DHHHH@PAwHOJcH>Hq$HHRHHHH@HKfl$ ,$a[l$0l$1fDtHuq$HHPHHBH@HH@l$ ,$zul$1l$0EfDl$ ,$GAl$1l$0Esl$ ,$zuuwl$l$01Ifl$ ,$zeugl$l$01fl$ ,$z%u#l$0l$D f.1f f.1ff.fSHHdH%(HD$1Ht$zrx.|$zHL$dH3 %(u8H[fDCH¸HuHo$HHH@PH@`PHgSHHdH%(HD$1Ht$躐t-uXHao$HHL$dH3 %(udH[H1HuH"o$HHH@PH@`P@Ho$\$1HHH0fX謆ff.SHHdH%(HD$1Ht$t-uXHn$HHL$dH3 %(udH[~H1HuHbn$HHH@PH@`P8HAn$\$1HHH0fXff.SHHdH%(HD$1Ht$jpt-uXHm$HHL$dH3 %(ujH[3~H1HuHm$HHH@PH@`P0D$1Htm$HHH0fX&fDUHSHH(dH%(HD$1HFH@`HtHH9t Ht$Hix Ht$HȜ}XL$D$@@DŽ@8tE@t$ÅHxl$1HHH0HtT$P@HQl$HHL$dH3 %(H([]f.Hl$HHHH@H@`{|H1HuHk$HHHH@PH@`댐 zD$3HL$HT$ Ht$H=Exa|$ Ht$HL$D$H|$uHH/HGP0HtH/uHGP0f.1@UHSHH8dH%(HD$(1HFH@`HtHH9t ޤHt$Hɏx Ht$H(}8L$fD$f@f@8tEft$ÅHVj$1HHH0HtT$fP H1j$HHL$(dH3 %(H8[]f.Hi$HHHH@H@`[zH1HuHi$HHHH@PH@`댐w1fD$3HL$ HT$Ht$H=xY|$Ht$ HL$D$H|$ uHH/HGP0HtH/u HGP0f1@UHSHHHdH%(HD$81HFH@`HtHH9t 辢Ht$Hfx Ht$HgT$d$((T$ d$yT$ fd$.(.\^zt//8t\ .z/(%(T.\/ rX`Hg$HHL$8dH3 %(HH[]f.Hg$HHHH@H@`wH1HuHjg$HHHH@PH@`댐D$ ÅuYH2g$1HHH0HOD$ @?@^f/wofHL$0HT$,Ht$(H=Le |$,Ht$0HL$$D$$H|$0uXHUH/KHGP0?,f%U*(T\(VJHtH/u HGP0D1\}ff.UHSHHXdH%(HD$H1HFH@`HtHH9t 辟Ht$(H^x Ht$0HX` T$0d$(f(f(T$$$tuT$f$$f.f(f.\^ztf/f/8t\ ůf.zf(%f(fTf.{\f/ Xy@Hd$HHL$HdH3 %(HX[]fHd$HHHH@H@`tH1HuHjd$HHHH@PH@`딐D$8ÅuYH2d$1HHH0HWD$8@G@^ff/wHL$@HT$$Ht$ H=[e |$$Ht$@HL$D$H|$@u_HUH/KHGP0?H,f%fUH*f(fT\f(fVMHtH/u HGP0fD1\z@UHSHHdH%(H$1HFH@`HtHH9t 踜@Ht$PHCWx Ht$`HXi@l$`H l$p|$|$0<$|$ yH l$,$Ezt#8t!@z 8 fDT$(D$(֫~f(fTf.|$$$Ha$HH$dH3 %(HĘ[]@HIa$HHHH@H@`qH1HuHa$HHHH@PH@`댐|$pMÅuOH`$1HHH0HMl$pxAfDw@HL$HHT$DHt$@H=#|$DHt$HHL$$H=H p$HHHR`HH$HHr`HH5ۗ$HHH=6HR`HH$HHr`HH5{$HHH=HR`HH\$HHr`HH5$HHH=HR`HH$HHr`HH5$HHH=FHR`HH$HHr`HH5[$HHH=ƯHR`HH<$HHr`HH5[HHH=Ə$HR`HHܑ$HHJ`HH HHH5f$HR`HH|$HHz`HH=HHH $HR`HH$HHr`HH5kHHH=$HR`HH$HHJ`HHHH5M$HJ`HH c$H Hz`HH=HHH $HR`HH$HHr`HH5HHH=$HR`HH$HHJ`HH HHH5-$HR`HHC$HHz`HH=HHHR`HH$HHr`HH5IHHH=t$HJ`HH $H {$HJ`HHHHJ`HH 8$H iHz`HHfDSH5HHXbHL@@HH(A8 11 rLcC< uHcDJDBzLMcMcrHcIIHcHcHHHMN NH<9H41HLݵ$H(L ʵ$L$H=$H5$H$H5;HaHL@@Hx(Ax %4 ʃHcA<0 uHcHcHHcHHH47H HH(H5O$H @$H1$tOH5[HaHt[HH@9 t1҃Hc<1 uH(t.)1H[ÐHPHR0)HPHR0@HPHR0@HHPHHuHSD$ HR0D$ H[@Iʺ( AAjD( @AWIAVAUATIUHSHH8Eq0dH%(HD$(1IA H$IA(HD$HD$ HD$AFD$1Hu8LHHH9s)3u#H fDu HH9wHH)HI9HHI9;tI)HT$ ME?t$1 HI HI HHH9uM;1f.;t HHL9|HD$ HL$LLHt$H$EHL$ 1@IHIHA9MI)MHD$(dH3%(H8[]A\A]A^A_fHL$LHt$LHD$ H$LD$ E1EHL$LHt$LHD$ H$HL$ cfDM~̀;HL$LHt$LHD$ H$HL$ MI)M #*^f.AWAVAUATIUSH8HcoGH|$H\$pT$L$ DD$Hl$(D$$HE1EHl$7fH8T$LtiImu IELP0IL9|$B<tbupH|$xthHD$xH-E$N,IEHEKtJL%D$B9\$ IHt H@89xt'H C$L $HhL $HDx>trHHDw@AIcAt#H|H/uHGP0HDHyH[]A\A]A^A_@H1[]A\A]A^A_HL $L $fD~|FAAHDEL@A9DLHH9t9H7HV8RbwA VtA9DLHE1H9uE9AD!Ð1ff.fAWHРIAVAAUATUHSHHw8DgDoEHHE1HD$E>WHA$DI7HJHIA9H}D9|HtHIA$Hw8DI?HuHt$H=^PI?I_LHH8TImIu IELP0H+u HCHP0H=MLHHSI,$Iu ID$LP0H+u HCHP0HEHx8(_LHHSImIu IELP0H+u HCHP0H5 AeHJcH>@H1[]A\A]A^A_Ht$H=,NIHEHx8^LHH)SI,$HH+H=LHHIRHmHI,$zI?6^HHIRH+H@I,$%H5%AwHJcH>H5H=51*NHHIlRHmHI,$H,?$HH8aQH+tuH[]A\A]A^A_H5H=ͣ1MLHHRI,$Hu ID$LP0Hmu HEHP0H>$HH8PH+uHCHP0|ID$LP0OHEHP0I,$:ID$LP0HCHP0I,$ID$LP0vHEHP0I,$aHCHP0ID$LP0H+H5H5wH5kH5~_H5~H5{H5ZH5GSHH@8HQwAx>Lt(HHHR=$1HhHC1[HPfDH<$H5zH8bX[ff.AWHIAVAUATUSHH8Hw8DoHT$HHL$ HEH`HD$(LcOHcGM$MHHJ4LsHt$Hy<$HH@89}OHcUHI`HHD$PHT$H*uHJHD$HQ0HD$HL;t$t1IIFHt$h9tqtf.EW0Iw@E1A}McE~YfEH;Pu01HTLH;JuPH9uA9ALE9uHt$(H=1=JHEAEE1IHD$ID$L9d$IJfAH$dH3%(H[]A\A]A^A_fs{E1MHL$ H1IOHD$@LEQ0HD$@Hh1HSHLd$@IMgHHHt$ t$8t$HAw(ATDL$4DD$xL$H H 4$HT$8H5>H81C/H H H H KAWAVAUATUHSHHHcwL$HO8HT$IDD$pLL$0dH%(H$1HcGHt$Ƅ$-IHHƄ$-HD$ H0HED$HD$@~ HD$HEH6LeIt L9d$ pE1ME11H\$(L-3$LL$AS@H2$LHDŽ$HpH$H/GuHGP0HI9t"H|L9uDŽHAI9uH\$(McM9H{`Dd$(|C0H$HD$ 1H$Ht$ H$Lct$(L$ HL$(M,L$Ht$HL|$8MMIHcsHS@HMH2LHL@HHJH9uM9HD$$9 uFHHt$@t$0t$@jATT$LDL$HD$Ht$8H0t<HcC0HH9RHT$@H5lH1$H81@H$dH3%(Hĸ[]A\A]A^A_DD$(H{`CsDŽ$Ƅ$-Ƅ$-t$8UH|$HcЃAH DLlFHL$HHHHD$`H$HD$hHI9HEH@8D`A9tA~H0$HH@8A9}Ic'IIHH{`HODI/uIWHD$PLR0HD$PDHy1HDd$XjMT$XIH$MHD$PDd$tLl$XI݋\$(Hl$xLL};\$8HD$H$A9 u\HLt$XH$PH$PjAWT$LDL$HD$Ht$8H0HmHwDd$tLHl$xLl$XDH$H$H9E1H$HHt$ HVH9H$HD$<-|>L|$ C.D$(ME1H-,.$Lt$5DH(PBu HPHR0IM9mH$M9IEIO<HEhHuMI,$ID$LP0fD$9$ t fH|$HID$HW& 9@ƃHH@0I9us{E1MHL$0HT$m10H~@IHH$H$H7`$DM9[kH$8H,$HhHPH8D$($HWHHu HPHR0MI,$ID$LP0AuA}E1MHL$0HT$1M$A9t >1Ld$`Lt$h&AA9TH I9uIU8HאH5HHDT$P1FT$PHS8HKH5DCHHDHa+$H817;M~HB+$HL$@C.H5JH81;XH+$H5hH8F8Bff.IҋWWAH΅~,LILfDHHt HR8zt&HH9u1Ht MDALDHuAMDAFALhAVAUATUSHHHW8dH%(HD$1H_HHDHH9GHHSHAMH@8HR8@R|wtrtmHHAH$tOHyuHHyH;=*$/L5)$HIpH$x>HI$_@MHDHwHt$dH34%(AH[]A\A]A^fDL5i)$1H޿II$HtuID$1HIhID$Ht LHDH>1xI<$H/uHGP0I|$I$H/uHGP0ID$7fDHI$HtefHy($H5’H8CHa)$H52H81(8I\$I<$H/uHGP0I$IL9uj @ff.fATAH5USH dH%(HD$1HG8HHDHH9w[HHLH@8pHHD$HAtzHyusHyH;=($H'$HT$Ht$HpHD$HT$x>HHEHEHDHH^1fIDHH|$dH3<%(H []A\Dx>uHHT$ HT$HHEu믐HHT$HT$HHEt\Hy&$H5H8AnHH^'$H5ǐH81%6IH}H/uHGP0H}HEH/uHGP0HE\=ff.@SLx HRt[H &$H5H815[@fATUSHH HW8dH%(HD$1HHHDHH9GHHSHAH@8HR8@R|HHD$HAt]HyuVHyH;=3&$H%$LD$Ht$HpHD$LD$x>HIbfDHDHHt$dH34%( H []A\DLD$1H޿H$$HLD$IHtVI@LHDHIHI@HLD$kLD$xt1yHLD$KLD$IHuR@H#$H5"H8J?.H$$H5H813 LIhH;H/uHGP0HHH9up;AWHAVAUATUSHL_8LRMMj8LDHEUH@8DHAiv AZLIAHAAAA v EAAH#$HH{IMPHPPHI HJ HIFH@8x>FHHCHCHN@AAlAR v E+x>hHHHCHHHCHHLDHuU1H[]A\A]A^A_@AfAR v Ex>HHILh8H!$HHVIMPHPPHI HJ HCHHCH\fH[]A\A]A^A_DH!$LHHxHH HHCHfDA}>IEL+LkIEHHCH@L=)!$LHIxIHCHIH$IMPHPPHI HJ HHCHCHiL= $LHIxIHHt>IHHCH;H/uHGP0HLH=1./IIHx8>LHHa3I,$Hu ID$LP0H+u HCHP0H= ,HHH"3HmIu HEHP0H+u HCHP0IFHx8Q>LHH2I,$Hu ID$LP0Hmu HEHP0H$HH81H+HCHP0DLpIHH@HPHHH0HHHkH;H/uHGP0HHH9ufH{HH/uHGP0HC\AWH}AVAUAATIUHSLHHW8HHDHEHx8HEDGHp8EHFAvDHAAt{AAAH v E~>HH3HsHHHCHHHDLy1H[]A\A]A^A_fDH v&>HH;H{HHHCH돐HIDLŅxH@uH$H5$H83e@WfDH!$HxHHtHCHHHCHH v>UHH;HELp8H$HHtvINPHPPHI HJ HCHHCHHHHHd,@L=Y$IxIHH IHuH;HCH/uHGP0H0HHHVuZL=$IxIHHIHnINPHPPHI HJ HCHHCHHH=1P*IHEHx89LHI.ImHu IELP0I,$u ID$LP0H=)'HHIB.H+Iu HCHP0Imu IELP0HEHx8q9LHH.I,$Hu ID$LP0Hmu HEHP0H$HH8,H+YHCH߽P0DHH*fHkH;H/uHGP0HHH9uH;HCH/HGP0fDAUHyATUSHL_8LRMMR8LDHERLH8AAhv AZLIAHP vAH$ HHH4IEH@8x>2HHCHCHHLDHa1H[]A\A]@AB +E"AB}AsLH=1'IIEHx8g7LHH+I,$Hu ID$LP0Hmu HEHP0H=}G%HHI+H+Hu HCHP0I,$u ID$LP0IEHx86HHIy+HmHu HEHP0I,$u ID$LP0H,$HH8a*H+HCHP0Ay>tIIL H$ HHCHtlHHCHb@H[]A\A]LHHuNfDAy>IL Ho$ HHCHuH;H/uHGP0HfDHHHCHfPv AH$ HHH`fLHHFwHkH;H/uHGP0HHH9uGHH@8@v 5D;ff.AWH@uAVAUATUSHLO8LRMMz8LDHEWH@8DXAkv AZOLIAHAAAR wFx>4HIH$ HhHCHtYHHCHARv A%x>HHHe$ HHCHuH;H/uHGP0HefL5$LHIxHHtHC HIhHCHHLDHr1H[]A\A]A^A_DH[]A\A]A^A_}DHHHOHHH/LH=1'#II$Hx82LHHY'ImHu IELP0Hmu HEHP0H=y HHI'H+Hu HCHP0Imu IELP0ID$Hx8H2HHI&HmHu HEHP0I,$u ID$LP0H$HH8%H+8HCHP0HkH;H/uHGP0HHH9uH;H/uHGP0H{HH/uHGP0HC-AWMAVAAUIATUHSHHH=o~$Ht,HMHH[D]LA\A]A^A_:f.HEH@8@P vuHEH@8@P vuH ~$MHDHL[]A\A]A^A_ @H!$ HhIHtXHHHƿ1v%HH}$I$tHI$'ID$LP0HI$u ID$LP0H[]A\A]A^A_f.DATH5pE1USH*Ht=H5pHH*Hu.HEH5pHHH5pH*D[]A\H9$H5gAH8d,fAWAVAUIATUHSHHHH|$PHT$pHLD$0dH%(H$x1H$pHT$HHD$@3AǃHtH$H9E.q/HD$ H|$  H= qLH=@pL H=pL H=oL@H=pL H=nLRHSH51HBHC1Hi HHD$(D|$Ll$L$HD$8HHD$(D|$H@HD$`HHD$hAGD$LHD$0HD$ HD$AHHD$fDL|$AML$HI_HfD9l$~cL$LD)HHL$LLdI/Ht3H%HIu%I9tHh%HH=&IM9uLct$HJpJDpJDŽpHD$XH|$h )HHHD$P1HHE HD$8HHE(1H|$`~0Ht$`H|$(HLPHcHHLHcH9|HH]H\$XHHT$ H&Ht$0HHHD$HHu HCHP0Hmu HEHP0HD$0H8H H;= $D|$1E~RLd$@Ll$1DI|Ht H/uHGP0IHD$8HD$(HD$8EAHH5kHHD$ "HHHD$PD`H $H9EAL $L9LD$)Ic$HHD$8HA~*LD$AL$H@ HT(I0LHH9uHDILt$8HEH5kH|$ InL\IHD$HIIFLP0HkHEHN1HHD$(HHL%rjLl$AMD|$IHH\$ +LHIM9bHa#N,LHr!HJTIuH; $tHsLHIHbI/uIGLP0H/4HGP0(LH5(yHi$H81HD$(HD$8EAOfDHMIcH9hH~=HEL $1L9@u1HT1L9@u HcH9RH|$ H5;i]!$HT$ HHEHHHt"HH$H8GH+u HCHP0HmYHEHP0JHD$(E8@Hq$DH5qH81=H$MLH5rH81LLH5rL)H^$H81E HD$(dHH5sH,$H81EHH5fsH=c@HHt&H5pHYHo$H+u HCHP0H={o$HH$LH5DrH81?HD$8HH5/sO=H5s HH5_sH)HHfHH9|fDHG8DGATLg(USH_ Hch E~UHHtKEXE1E1E1IIM9t#IJHtHKHIM9uL1E1LOLHoH*HG8HcP 1Hw~ fHw LcJH;G|[]A\@GE1uFHG(NȋHLHHLMxELW O ILHAD9GvHMcȅtHG J<~HG(NMuILHHH8yD1DAWAVAUATUSHH$$4$HT$PHL$8LD$hLL$pxH$H$H9t<$$HHD$8H8H@HD$$H\$8D@LDD$dHH4H$HHHHT$xHt"H$H1Hĸ[]A\A]A^A_f$IH$IL\$PIHH$HHD$(HHHHD$HD$hJ4HƄ$HD$`H HH HIHLHIH LI H LHHHI LH\$ HD$HPHAHD$pJ4Hy\$`HމH HIHLHIHH LI H IHLHI LHD$HT$@H$D$HD$(MSAH$MHEE<Ht$(11HIHHI?H?HHL H xH9D$ wuH9t$HwHH H\$XLD$ HT$HE11AAfA|I93H9w I9%IE1M)H9MIAI)LAMDIE1HAIIHIHI?HL IHI?L II gH\$XIAu H_D$M D$0HD$\$`H$8\$0H|$u L;T$@JH\$@1L9L)HHD$IHH|$\$`\$0HlH|$E11DH9u L9I1M  E1@H9I9r H9HE1H)L9HHAL)I҉Mt HfLE1IAIHHIHI?HL MII?L IM 7 fH9rdI9rH9_H)E1I9AI)IHI)E1H9AH)III9H9IM I E1HIDHD$PH8H@HD$ fH\$(HD$H1HHD$XHD$ H1IHHIIOHD$XHHD$Xs HD$XIƄ$fDHD$@1I9@I)Ht"HH|$1Ht$HDL1LT$0Ht$LIMt |$0 LT$M{ D$D:L$~ L;T$Hr Ek H\$H1L9L)HIHD$  DL$HH|$(c H4Ht$(E11DH9_L9s H9QI1M E1ɺAOH9L9w H9HE1H)L9HHAL)IDMt HLE1IAIHHIHI?HL MII?L IM fH9rL9aH9tH9\H)E1I9AI)IHHIMHI?H?HHM H DII I v1MkLNfDHIMHI?H?HHM H rDII I 1MLfDMMt |$ HD$`H|$H$r$dH|$E11HHMHH?H?HHI H xH9L$wuH9|$@wMI L\$HT$@1E1ADAI9H9r I9IIM)ME1H9AI)LAMtI@LE1IAIHHIHI?HL MII?L IM AeI9rH9aI9tI9\I)E1H9AH)II|@MI I uE1HvIYH|$HD$@1HIHD$I1L$H|$`u M( T$`|$0($Z$y8Hg M L |$XHt$XE1HtHD$XƄ$|$} $}$ Hl$XH|$HIIMuHH9D$X@DHO|$$M;H|$(@AMPAL$II EI LLLIHMHH IH I LILH IHD8$8H9T$ uu L9L$HhHL$HH+T$ 1D$I9I)HHH|$yHD$AHH$H$AH LLHIHIIH II I MIIH IIAD:d$`HD$L9qL9\$@r L9aH\$@L+l$1Dd$`I9I)HIHeHHL9OL)IHg$<MHM|$`eMH\$`I@q<$MlHD$pH$L|$0HHl$L$HD$(HD$hH$Ll$xHD$ HD$8H|$8HD$HD$PHD$$D$`H$L$H$L$$IHIH$LHM)MMHHIH9HHIH9H$HH$L9aYH$$$P$AVLL$XLD$PHL$HHT$@$$oH0IH+\$II)L;l$0H$HM CHHHHI9 HD$H\$@L)I1L9L)HIIHHHL9L@HD$ HL$HH)H1L9L)HIHD|$`HI9f.fDL9d$8HT$@1L$LgHT$0L8f$I9u L9T$XHl$XLHHIMrHu=$MѾD$f|$HI9fH|$(HD$(AHH$MHAAID$D:L$LT$HHD$ Ll$HfDH$D$`@HƄ$ID$0*|$HMʀ$Hl$XL I I L/1E11D|$0$I9~H|$XL9I9LELd$XHD$H1Ll$I9I)HtHH|$(1Ht$(HL1Ht$(IL^f.HD$LT$@vHfDI9Eu L9L$X8D$Hl$XH|$HIIH?MD@H9M9H9MDf.I9WHt$XL9I9LELd$XHT$ E1LL$HAIHfLl$1L\$@HI}@MeH$$LH$HXLC$&LD$PIHHH?HHI9L$19HcHHItHH?HHI9tӸI I ^M1E1LHIsHE1D$0ILd$X{1f1Ht$HD$`D$0DL$fD$qHI9GW_HHHI9EHMD1)fILd$XƄ$$D$`H91M9"H9HDE1Ld$XƄ$[IsHE1D$fIsHE1ҺfE1HT$H$Mш\$HI1HD$ E1HD$Ƅ$D$MHH|$IM@E11 AWAVAUATUSHHXHL$L $dH%(HD$H1H>HlHVH0ELVIHLL"fH96HHyH9uEE11AII`f.LHHI9LHHI9ELLH~gLH)L9ELLL9IRI:III?IIHtHLHIH9EOLH@tLH)L9EOH1H\$HdH3%(HX[]A\A]A^A_f.fA%DHLHIH9EOEuHxtAHt$(LIDD$0HD$@HLIHD$LIHD$ MMHHD$u HH|$$H|$H|$ $bHHH>HH$HHH;FEuH1E!Ht$(DD$0LvL>MLLAE1HIHHIH~VAE1!HHHHHIII)I)Ht*HHHHHIII)I)HuMMHHD$HHD$LHD$ Lu:HHDHD$HPt$APt$(SLL$PLD$@HL$HH0LLNHHILHHIMHAHII9H?HII9AH~MMLHHHHI9H?HHI9MHL)L9HD$MLHEHt$(H~ Lt$ LhH\$0ADD$D$> fD$HD$0H$,$HHHAHPcHHH1H)к"DH~CHtHH9~;{f$$$$$$$$H@H;{HP[<H|$@l$@l$@|$@l$@a;+{HP[@;{;{f;{<$H<$|$0|$ l$<$|$XZl$,$l$ r,E„tDDЄt@W"ff.fH~f~D$fnL$H L$D$8HfD$D$ H H‹D$H H$~$Hff.fHcfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHsfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fH3fD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHCfD$D$ H H‹D$H H$~$Hff.fHfD$D$ H H‹D$H H$~$Hff.fHsfD$D$ H H‹D$H H$~$Hff.fgf(f(f(ff.H#Hff.HsHff.HHff.HHff.HHff.HHff.HHff.HHff.H#Hff.HHff.HHff.HHff.H#Hff.HHff.H#Hff.Ht$t$t$8t$8CH(ff.SHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(3H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(CH H;{[DSHt$(t$(t$(t$(H H;{[DSHt$(t$(t$(t$(H H;{[D11f|f|t1ff.f1f|ff.f|1f|ff.DHf|f%f|ttf{t}fy8fu3f,wfvf ɃH@f(wfvf Ƀ@{~HÐ{|HÐff ff.ff9t 1fDAUAATUS߉HtEDt/~A~huDHD[]A\A]fDDAuЉt,DfDfAfHD[]A\A]DfxfD9DeAfEx DeAnDf%ff9vUSHt1H[]Duf9t 1fH[]ff.@HHfx1fx1f9fxff ff1f9ff.fUS߉H tH1[]DuH[]fff.@fx/1f9fx ff1f!Dfyff1f9ff.US߉H:tH1[]DuH[]fOff.@ATU%Sf=Gv(=f|[]A\D=8wi=2~)AčЅqD)ڍ[?E ]A\D-8? E f|tf݉[]A\D |[f|f|D]A\f. fDf.kfDf~HATHH@UHH!H0SfH9v-H94HH!f|[]A\DH?H9H_>H9H4H)IHH!HHHHHHHD)HH!HH [H9HEH*]A\DHH)HH!H!H*HH9H4 HEH*f|t\݉[]A\H*|[f|f|D]A\Ð+fDH?HfDfH~f׉%f|t6f|t D  Ǎ@ftfu6fDftp)щ  ǍfD8ff.H D$ D$ HÐUHSH(dH%(HD$1D$ T$ H|$((D$ D$L$ fE(HL$dH3 %(uH([]fDHHH0H!ȉf|tDf|tHH*HHH*H!H HHfDftfuFfDftHH)HH4HH*H!H HfH?@H@HD$D$HWGl$D|$l$D$fD$l$l$f|$l$D$fD$l$l$fl$D|$l$D$ fD$l$l$ff.Hl$ wH<$PP<$ZY,$ff.f''wl$l$t@''鷾g׽fT4$f(fTf.v3H,f%fUH*f(f(fT\fVf.f(hfTf.v3H,ff(%1fUf(H*fTXfVf.df(fTf.vXfUf(\fVf$f(%f(fTf.vH,ffUH*fVf(ff.@fQf.wf(HL$ L$Hf(ff.GW77釻wf(fTfTfV7鷻駺7GT@()T.v,,f%U*((T\V@t(T.v,,f(%U(*TXV@$(T.vXU(\Vff.@(%I(T.v,fU*V(fQ.w(HL$ lL$ H(ff.釼׿闿G׿闼gGG鷷(TRT{Vw.z7f.{f/w A(fu(f. fDY YH#YHfDYff.@.{'(\fH/w#/sNHfuXDW9T$ 虹T$ HXf.L$ pL$ HXÐ.{'(\fH/w#/sNHfuXDWT$ T$ HXf.L$ L$ HXÐSHHL$ D$胷T$ f\$.{v(.\^zu/fw2-?(f/(/8t X\%.z4u2^f/w+H[uH[@fl$ Zd$d$l$ Z\/%vXf.z6ff.{ff/w f(Duf(f hfDYdY\HYSHfDYL߷ff.@f.{&f(\fHf/w f/sJHDuXDfWxT$xT$HXfL$PL$HXÐf.{&f(\fHf/w f/sJHDuX>DfWT$譺蘸T$HXfL$腺pL$HXÐSHHL$$TT$f$f.{f(f.\^zuf/fw3-)f/f(f/8t X\%ff.z8u6^ff/w+H[fD{H[f(l$$$L$$l$\f/%vXfl$z,{wDul$ff.@l$-ff.@l$-ff.@Ht$t$KHfl$|${ff.Hl$ l${w sJHuH|$H<$誰<$¾l$ Y^HD|$ H<$~<$薾l$0XZHfHl$ l${w sJHuH|$H<$躶<$bl$ Y^HD|$ H<$莶<$6l$0XZHfSHH@l$`<$|$`t$Xt$X*H l$Pl$@zuw.4@8tfD ffDz0u`. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\sqrt{ a^2 + b^2 }`. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(start=-10, stop=10, num=101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray') >>> plt.show()Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. If `x` is a scalar then a scalar is returned, otherwise an array of the same shape as `x` is returned. See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cos(z) = x`. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytic function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show()Inverse hyperbolic cosine, element-wise. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- arccosh : ndarray Array of the same shape as `x`. See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0Inverse sine, element-wise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- angle : ndarray The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. If `x` is a scalar, a scalar is returned, otherwise an array. See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytic function that has, by convention, the branch cuts [-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or sin^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0Inverse hyperbolic sine element-wise. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Array of of the same shape as `x`. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295])Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). It is a scalar if `x` is a scalar. See Also -------- arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`) and the positive `x`-axis. angle : Argument of complex values. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytic function that has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or tan^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show()Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : array_like, real-valued `y`-coordinates. x2 : array_like, real-valued `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. See Also -------- arctan, tan, angle Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816])Inverse hyperbolic tangent element-wise. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Array of the same shape as `x`. See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614])Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like Result. See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True], dtype=bool)Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like Result. See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool)Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like Result. See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False], dtype=bool)Return the cube-root of an array, element-wise. .. versionadded:: 1.10.0 Parameters ---------- x : array_like The values whose cube-roots are required. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray An array of the same shape as `x`, containing the cube cube-root of each element in `x`. If `out` was provided, `y` is a reference to it. Examples -------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.])Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\lceil x \rceil`. Parameters ---------- x : array_like Input data. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. See Also -------- floor, trunc, rint Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.])Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]])Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences, they have to be of the same length. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : array_like Values to change the sign of. x2 : array_like The sign of `x2` is copied to `x1`. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like The values of `x1` with the sign of `x2`. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.])Cosine element-wise. Parameters ---------- x : array_like Input array in radians. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding cosine values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeHyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Output array of same shape as `x`. Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show()Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding angle in radians. See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray of floats The corresponding degree values; if `out` was supplied this is a reference to it. See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = degrees(rad, out) >>> np.all(r == out) TrueReturn element-wise quotient and remainder simultaneously. .. versionadded:: 1.13.0 ``np.divmod(x, y)`` is equivalent to ``(x // y, x % y)``, but faster because it avoids redundant work. It is used to implement the Python built-in function ``divmod`` on NumPy arrays. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out1 : ndarray Element-wise quotient resulting from floor division. out2 : ndarray Element-wise remainder from floor division. See Also -------- floor_divide : Equivalent to Python's ``//`` operator. remainder : Equivalent to Python's ``%`` operator. modf : Equivalent to ``divmod(x, 1)`` for positive ``x`` with the return values switched. Examples -------- >>> np.divmod(np.arange(5), 3) (array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1]))Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays of the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False], dtype=bool) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True], dtype=bool)Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Output array, element-wise exponential of `x`. See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \ln y = \log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\cos b + i \sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", http://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray') >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv') >>> plt.title('Phase (angle) of exp(x)') >>> plt.show()Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Element-wise 2 to the power `x`. See Also -------- power Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.])Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Element-wise exponential minus one: ``out = exp(x) - 1``. See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10Compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The absolute values of `x`, the returned values are always floats. See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2])First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers. .. versionadded:: 1.12.0 Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. See Also -------- power : power function that preserves type Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]])Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\lfloor x \rfloor`. Parameters ---------- x : array_like Input data. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The floor of each element in `x`. See Also -------- ceil, trunc, rint Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", in other words ``floor(-2.5) == -2``. NumPy instead uses the definition of `floor` where `floor(-2.5) == -3`. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.])Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python ``//`` operator and pairs with the Python ``%`` (`remainder`), function so that ``b = a % b + b * (a // b)`` up to roundoff. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray y = floor(`x1`/`x2`) See Also -------- remainder : Remainder complementary to floor_divide. divmod : Simultaneous floor division and remainder. divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.])Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmin : Element-wise minimum of two arrays, ignores NaNs. maximum : Element-wise maximum of two arrays, propagates NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. minimum, amin, nanmin Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN])Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmax : Element-wise maximum of two arrays, ignores NaNs. minimum : Element-wise minimum of two arrays, propagates NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. maximum, amax, nanmax Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN])Return the element-wise remainder of division. This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend `x1`. It is equivalent to the Matlab(TM) ``rem`` function and should not be confused with the Python modulus operator ``x1 % x2``. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : array_like The remainder of the division of `x1` by `x2`. See Also -------- remainder : Equivalent to the Python ``%`` operator. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. For `fmod`, the sign of result is the sign of the dividend, while for `remainder` the sign of the result is the sign of the divisor. The `fmod` function is equivalent to the Matlab(TM) ``rem`` function. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]])Decompose the elements of x into mantissa and twos exponent. Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``. The mantissa is lies in the open interval(-1, 1), while the twos exponent is a signed integer. Parameters ---------- x : array_like Array of numbers to be decomposed. out1 : ndarray, optional Output array for the mantissa. Must have the same shape as `x`. out2 : ndarray, optional Output array for the exponent. Must have the same shape as `x`. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- (mantissa, exponent) : tuple of ndarrays, (float, int) `mantissa` is a float array with values between -1 and 1. `exponent` is an int array which represents the exponent of 2. See Also -------- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Examples -------- >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4]) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.])Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False], dtype=bool) If the inputs are ndarrays, then np.greater is equivalent to '>'. >>> a = np.array([4,2]) >>> b = np.array([2,2]) >>> a > b array([ True, False], dtype=bool)Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False], dtype=bool)Compute the Heaviside step function. The Heaviside step function is defined as:: 0 if x1 < 0 heaviside(x1, x2) = x2 if x1 == 0 1 if x1 > 0 where `x2` is often taken to be 0.5, but 0 and 1 are also sometimes used. Parameters ---------- x1 : array_like Input values. x2 : array_like The value of the function when x1 is 0. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray The output array, element-wise Heaviside step function of `x1`. Notes ----- .. versionadded:: 1.13.0 References ---------- .. Wikipedia, "Heaviside step function", https://en.wikipedia.org/wiki/Heaviside_step_function Examples -------- >>> np.heaviside([-1.5, 0, 2.0], 0.5) array([ 0. , 0.5, 1. ]) >>> np.heaviside([-1.5, 0, 2.0], 1) array([ 0., 1., 1.])Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- z : ndarray The hypotenuse of the triangle(s). Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]])Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like Result. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", http://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool)Test element-wise for finiteness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray, bool For scalar input, the result is a new boolean with value True if the input is finite; otherwise the value is False (input is either positive infinity, negative infinity or Not a Number). For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is finite; otherwise the values are False (element is either positive infinity, negative infinity or Not a Number). See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0])Test element-wise for positive or negative infinity. Returns a boolean array of the same shape as `x`, True where ``x == +/-inf``, otherwise False. Parameters ---------- x : array_like Input values out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : bool (scalar) or boolean ndarray For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same shape as the input and the values are True where the corresponding element of the input is positive or negative infinity; elsewhere the values are False. If a second argument was supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True, respectively. The return value `y` is then a reference to that array. See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1])Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or bool For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False. For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False. See Also -------- isinf, isneginf, isposinf, isfinite, isnat Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False], dtype=bool)Test element-wise for NaT (not a time) and return result as a boolean array. Parameters ---------- x : array_like Input array with datetime or timedelta data type. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or bool For scalar input, the result is a new boolean with value True if the input is NaT; otherwise the value is False. For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaT; otherwise the values are False. See Also -------- isnan, isinf, isneginf, isposinf, isfinite Examples -------- >>> np.isnat(np.datetime64("NaT")) True >>> np.isnat(np.datetime64("2016-01-01")) False >>> np.isnat(np.array(["NaT", "2016-01-01"], dtype="datetime64[ns]")) array([ True, False], dtype=bool)Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : array_like Array of multipliers. x2 : array_like, int Array of twos exponents. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. See Also -------- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.], dtype=float32) >>> x = np.arange(6) >>> np.ldexp(*np.frexp(x)) array([ 0., 1., 2., 3., 4., 5.])Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Has to be non-negative. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40])Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less_equal, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False], dtype=bool)Return the truth value of (x1 =< x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, greater_equal, equal, not_equal Examples -------- >>> np.less_equal([4, 2, 1], [2, 2, 2]) array([False, True, True], dtype=bool)Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf])Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., NaN])Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray Base-2 logarithm of `x`. See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.]) >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Input arrays. `x1` and `x2` must be of the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical AND operation on corresponding elements of `x1` and `x2`. See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False], dtype=bool)Compute the truth value of NOT x element-wise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True], dtype=bool)Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. They have to be of the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical OR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool)Compute the truth value of x1 XOR x2, element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. They must be broadcastable to the same shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by whether or not broadcasting of one or both arrays was required. See Also -------- logical_and, logical_or, logical_not, bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]], dtype=bool)Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- minimum : Element-wise minimum of two arrays, propagates NaNs. fmax : Element-wise maximum of two arrays, ignores NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. fmin, amin, nanmin Notes ----- The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.maximum(np.Inf, 1) infElement-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- maximum : Element-wise maximum of two arrays, propagates NaNs. fmin : Element-wise minimum of two arrays, ignores NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. fmax, amax, nanmax Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.minimum(-np.Inf, 1) -infReturn the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y1 : ndarray Fractional part of `x`. y2 : ndarray Integral part of `x`. Notes ----- For integer input the return values are floats. See Also -------- divmod : ``divmod(x, 1)`` is equivalent to ``modf`` with the return values switched, except it always has a positive remainder. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0)Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])Numerical negative, element-wise. Parameters ---------- x : array_like or scalar Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar Returned array or scalar: `y = -x`. Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.])Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True], dtype=bool)Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- not_equal : ndarray bool, scalar bool For each element in `x1, x2`, return True if `x1` is not equal to `x2` and False otherwise. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True], dtype=bool) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]], dtype=bool)Numerical positive, element-wise. .. versionadded:: 1.13.0 Parameters ---------- x : array_like or scalar Input array. Returns ------- y : ndarray or scalar Returned array or scalar: `y = +x`. Notes ----- Equivalent to `x.copy()`, but only defined for types that support arithmetic.First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Note that an integer type raised to a negative integer power will raise a ValueError. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. See Also -------- float_power : power function that promotes integers to float Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]])Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding angle in degrees. See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding radian values. See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out TrueReturn the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray Return array. Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003])Return element-wise remainder of division. Computes the remainder complementary to the `floor_divide` function. It is equivalent to the Python modulus operator``x1 % x2`` and has the same sign as the divisor `x2`. It should not be confused with the Matlab(TM) ``rem`` function. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The element-wise remainder of the quotient ``floor_divide(x1, x2)``. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- floor_divide : Equivalent of Python ``//`` operator. divmod : Simultaneous floor division and remainder. fmod : Equivalent of the Matlab(TM) ``rem`` function. divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1])Shift the bits of an integer to the right. Bits are shifted to the right `x2`. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1])Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray or scalar Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.])Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. nan is returned for nan inputs. For complex inputs, the `sign` function returns ``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``. complex(nan, 0) is returned for complex nan inputs. Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The sign of `x`. Notes ----- There is more than one definition of sign in common use for complex numbers. The definition used here is equivalent to :math:`x/\sqrt{x*x}` which is different from a common alternative, :math:`x/|x|`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 >>> np.sign(5-2j) (1+0j)Returns element-wise True where signbit is set (less than zero). Parameters ---------- x : array_like The input value(s). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- result : ndarray of bool Output array, or reference to `out` if that was supplied. Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False], dtype=bool)Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : array_like The sine of each element of x. See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\pi / 2` to +1 for :math:`\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\pi`. Sines of angles between :math:`\pi` and :math:`2\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show()Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding hyperbolic sine values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeReturn the distance between x and the nearest adjacent number. Parameters ---------- x : array_like Values to find the spacing of. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> np.spacing(1) == np.finfo(np.float64).eps TrueReturn the positive square-root of an array, element-wise. Parameters ---------- x : array_like The values whose square-roots are required. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real "interval" [`-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, numpy.inf]) array([ 2., NaN, Inf])Return the element-wise square of the input. Parameters ---------- x : array_like Input data. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Element-wise `x*x`, of the same shape and dtype as `x`. Returns scalar if `x` is a scalar. See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j])Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]])Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding tangent values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeCompute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray The corresponding hyperbolic tangent values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", http://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "", line 1, in ValueError: invalid return array shapeReturns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- out : ndarray Result is scalar if both inputs are scalar, ndarray otherwise. Notes ----- The floor division operator ``//`` was added in Python 2.2 making ``//`` and ``/`` equivalent operators. The default floor division operation of ``/`` can be replaced by true division with ``from __future__ import division``. In Python 3.0, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([0, 0, 0, 0, 1]) >>> x//4 array([0, 0, 0, 0, 1]) >>> from __future__ import division >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1])Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs `. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. See Also -------- ceil, floor, rint Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.])ý.@5?q(7[??.eB5<K;?[>r1??cܥL@9RFߑ?0C+eG?&{?9B.?-DT! @iW @ox?output parameter for reduction operation %s has the wrong number of dimensions (must match the operand's when keepdims=True)output parameter for reduction operation %s has a reduction dimension not equal to one (required when keepdims=True)output parameter for reduction operation %s does not have enough dimensionsoutput parameter for reduction operation %s has too many dimensionsreduction operation '%s' is not reorderable, so only one axis may be specifiedzero-size array to reduction operation %s which has no identityReduce operations in NumPy do not yet support a where maskreduction operation %s did not supply an inner loop function(O)Integers to negative integer powers are not allowed.In the future, 'NAT == x' and 'x == NAT' will always be False.In the future, 'NAT > x' and 'x > NAT' will always be False.In the future, 'NAT >= x' and 'x >= NAT' will always be False.In the future, 'NAT < x' and 'x < NAT' will always be False.In the future, 'NAT <= x' and 'x <= NAT' will always be False.In the future, NAT != NAT will be True rather than False.unorderable types for comparison??AAAA????C?    ????AAAAAAAA?Warning: %s encountered in %s python callback specified for %s (in %s) but no function found.log specified for %s (in %s) but no object with write method found.buffer size (%d) is not in range (%ld - %ld) or not a multiple of 16python object must be callable or have a callable write methodOnly unary and binary ufuncs supported at this timeOnly single output ufuncs supported at this timesecond operand needed for ufuncreturn arrays must be of ArrayType'out' must be a tuple of arrays'out' must be an array or a tuple of a single arrayelementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparisoncannot specify both 'sig' and 'dtype'cannot specify 'out' as both a positional and keyword argumentThe 'out' tuple must have exactly one entry per ufunc outputpassing a single array to the 'out' keyword argument of a ufunc with more than one output will result in an error in the futurecannot specify both 'sig' and 'signature''%s' is an invalid keyword to ufunc '%s'__array_prepare__ must return an ndarray or subclass thereof which is otherwise identical to its input__array_prepare__ must return an ndarray or subclass thereof_ufunc_doc_signature_formatterReduction not defined on ufunc with signature%s only supported for binary functions%s only supported for functions returning a single valueThe 'out' tuple must have exactly one entrykeepdims argument has no effect on accumulate, and will be removed in futurecannot perform %s with flexible typeufunc %s has an invalid identity for reductiontype resolution returned NotImplemented to reduce ufunc %scould not find a type resolution appropriate for reduce ufunc %saccumulate does not allow multiple axescould not find a matching type for %s.accumulate, requested type has type code '%c'provided out is the wrong size for the reductionreduceat does not allow multiple axesindex %d out-of-bounds in %s.%s [0, %d)could not find a matching type for %s.%s, requested type has type code '%c'too many dimensions for generalized ufunc %s%s: %s operand %d does not have enough dimensions (has %d, gufunc core with signature %s requires %d)%s: %s operand %d has a mismatch in its core dimension %d, with gufunc signature %s (size %zd is different from %zd)%s: Output operand %d has core dimension %d unspecified, with gufunc signature %sToo many operands when including where= parameterThe __array_prepare__ functions modified the data pointer addresses in an invalid fashionXX can't happen, please report a bug XXmethod outer is not allowed in ufunc with non-trivial signatureouter product only supported for binary functionsexactly two arguments expectedError object must be a list of length 3',' must not be followed by ')'incomplete signature: not all arguments foundunknown user defined struct dtypeuserloop for user dtype not found%s encountered in %sNNwriteNO%s must be a length 3 list.invalid error mask (%d)OO|O:atfirst operand must be arrayoutput arrayinvalid number of argumentsOOiinvalid keyword argumentcastingdtype(N)extobjordersigsignature'subok' must be a booleanwhereO(OOi)numpy.core._internal %sfunction not supportedOO|OO&O&:reduceatO|OO&O&O:accumulateO|OO&O&i:reduceO(O)itoo many values for 'axis'AxisErroriiOcannot %s on a scalarduplicate value in 'axis'divide by zerooverflowunderflowinvalid valueOutputInputufunc %s __call__outer(OO)O:seterrobjtestexpect dimension nameexpect '('expect '->'expect ','expect ',' or ')'%s at position %d in "%s"unknown user-defined typeaxiskeepdimsindicesnumpy.ufunc__doc__ninnoutnargsntypesidentity, LI&}>}>>`=>numpy.coreComplexWarningubyte_scalarsushort_scalarsuint_scalarsulong_scalarsulonglong_scalarshalf_scalarscfloat_scalarscdouble_scalarsclongdouble_scalarsCasting complex values to real discards the imaginary partiiiitiit|LlT$t\D,$4llT$t\D,L4d$ < d 4 d"L"," "!|"####t#$ &%%t%%<&l(4(''t'(**d*4*)*.'no''safe''same_kind''unsafe''equiv' to with casting rule %s(unknown) and Cannot cast ufunc %s input from Cannot cast ufunc %s output from ufunc 'isnat' is only defined for datetime and timedelta.ufunc '%s' did not contain a loop with signature matching types the ufunc default masked inner loop selector doesn't yet support wrapping the new inner loop selector, it still only wraps the legacy inner loop selectoronly boolean masks are supported in ufunc inner loops presentlyufunc '%s' output (typecode '%c') could not be coerced to provided output parameter (typecode '%c') according to the casting rule '%s'ufunc '%s' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule '%s'a type-tuple must be specified of length 1 or %d for ufunc '%s'the type-tuple provided to the ufunc must specify at least one none-None dtypea type-string for %s, requires 1 typecode, or %d typecode(s) before and %d after the -> signfound a user loop for ufunc '%s' matching the type-tuple, but the inputs and/or outputs could not be cast according to the casting ruleNo loop matching the specified signature and casting was found for ufunc %sufunc %s is configured to use binary comparison type resolution but has the wrong number of inputs or outputsrequire data type in the type tupleufunc %s is configured to use unary operation type resolution but has the wrong number of inputs or outputsThe numpy boolean negative, the `-` operator, is not supported, use the `~` operator or the logical_not function instead.ufunc %s is configured to use binary operation type resolution but has the wrong number of inputs or outputsufunc %s cannot use operands with types numpy boolean subtract, the `-` operator, is deprecated, use the bitwise_xor, the `^` operator, or the logical_xor function instead.TU VVU*TUUUU^F_=_4_+_\_____array_ufunc_errmsg_formatterThe 'out' tuple must have exactly %d entries: one per ufunc outputpassing a single argument to the 'out' keyword argument of a ufunc with more than one output will result in an error in the future'out' must be a tuple of argumentsufunc() missing %ld of %ldrequired positional argument(s)ufunc() takes from %ld to %ldarguments but %ld were givenargument given by name ('out') and position (%ld)ufunc.reduce() takes from 1 to 5 positional arguments but %ld were givenargument given by name ('%s') and position (%ld)ufunc.accumulate() takes from 1 to 4 positional arguments but %ld were givenufunc.reduceat() takes from 2 to 4 positional arguments but %ld were givenufunc.outer() missing %ld of %ldrequired positional argument(s)ufunc.outer() takes %ld arguments but%ld were givenufunc.at() takes from 2 to 3 positional arguments but %ld were givenInternal Numpy error: unknown ufunc method '%s' in call to PyUFunc_CheckOverrideInternal Numpy error: call to PyUFunc_HasOverride with non-tupleInternal Numpy error: too many arguments in call to PyUFunc_HasOverrideoperand '%.200s' does not support ufuncs (__array_ufunc__=None)ndarray.ͰoDDDDDDDoDDYDJoYYDDDDD4JDDDD4Y4DDDDDDDDDDͱDDDDDͱDDDDͱDDDDDͱDDDDDDDDDDD|DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDmDDDDDDDDDDDDDDDDDDDDDDD;7p7 8rpr`08pD8X8l8888P8`8p88 9 9049PH9\9p99г9@9p9 :з :4:PH:\::0:P:`:p:;8; T;@p;P;`;p;;;0<p@<X<p<`<<<<м==PL=h====н===@=>$>`8>пx>>>> >?(?T0?TP@U0BU0C(U0Dpd@d`BdPDd FdKeQpeXe^ f`dxf jftfghgghXhhhТili`iiipj\jpjjjjjk$kP8kLkP`kk@kk`k4l l,l8lEl`Ql]ljl0{Xmlmmmm0mmmnXn@no@`oop04pXpp`qTqqq Prtr rrs$s@\sssss @tTtht|t0t t&t.t6t>tFuPK\uOu`[ufu`ru}v`v(vvvvvww,w@w0Twy`z|Pd~(#06PI4OV܂p\0b0i؃o,0wP}~~Ԅ0 h|pЍ,0@PT@h|̆` t`Pć؇!D`,X,t/8Ȉp;܈>@DpS܊@csd0(ԓ0LH0Ph@`ܖ$@8Lp ܗ P `0,@T(.Șp4ܘ@:p=@@MZg̙tЁН`tp0` p н4pP0p,p Ԟ(P'|/П8$BHK0LL̠PM NN`NtpO SС`YZ,\@`TbhPh|m y~,|А̣НЪp@0D@̤ 4 H0\pp#P0-Ħ68>G PDYh0bjtdP} Џ` تp L0DpXвl p0DPp0D X0 Ю 4H`\ppH `бp#%TP3ANP`\jwL`pĴ0@@$@8L`Pt@$8ط0P(p<Pȸ,@Th0ع@x@ XȻ@#80>M4\kܽz0 TpЙľ`ؾ d`xpĿPؿ(@<P @d0Pp(p@pP,@PP 00$)xp7 E Rt`0n~@  X`lp p0DPp@X0P p h |pPp $8pH(P`'\5DSXbp$x@А`4H0\<PХd``DXl`L` tгTh|` @\p@л(<`P@dx 00D0p@Xl@ 0PP@4Xl 0@P ` DXl`p@8d0 <xP(<Pdp `  4 | `  `P<p `P`0pxpP@ %')p-P10@5D09X0=l0AAAPBBCE(`G<HPHPII`L8N|OPRRXT`U@VVVPXY$Y8@ZLZ@[[$`\l\`]]`^^ _p__(`<``P`t@aab@bbb @c ctdd@eefPg0 ij0l4plHl\mp@mmmm`nn(`o|op4qrsuduvv<wwxx\@yy@z4z| {{ |T`||`}, ~t~`L 0(pP`dPЅP@@ 00DX0|@pА(<PdPx ` D`Xlp`(<Pdx P4H\`pТ0Pd`x@``0 DЬXl0Pp $PdPx@00H` йLpP$ @l   , @  T   0 @ P ` p$ 8 @  $ t   L @x  $8 LPh8@ppD t`$l101@11LUT`Y Z[p\<c@c`f4hi i@iiiij  j @j4`jHj\jpj0kpkkkkk0lDlX ll0l@lmmn  o0oT@px`pp qPqqs@@sXs|tupvw@xXx|yzp{|8}P}t~@00ЁH`l P< pT x Ї  p 4!L!p!!P! !,"D"ph"0"""p#<#`#`#Ж##$04$X$|$P$$%,% P%Нt%%%&$&PH&l&&p&''@'Pd''Ч'@'`( 8(\(p(0((`) <)@T)x))) *(*pL*0p*** +@ +D+h+P++,,`<,`,,p,0,,-pD-l-0--p-0.,.pP.x...p0/d//@/0,0X00P0@0010410`1 1 112<2h22223D3p3333 4pL4x444 4 (5T55p55606\66p6 6 #7 %@7'l7)7+7-7/$81P848687899<<9>h9`@9pB9E9G :IT:J:@M:0O: Q; S0; U\; W;X;0\;_<cL<pex<pg<`i<Pk=Pm8=@od=0q=0s= u=w> yP>p{|>`}>p>?4?`?`?`?@? @D@p@@@@(A`TA`A@A0A B0LB`B@B0B C04ChCCCC(D \DD D`DE 0A(A BBBD 0A(A BDBGhPXL@BBB E(A0A8G 8D0A(B BBBG H@eBBE E(D0D8G`f 8A0A(B BBBC H(eBBE E(D0D8Gpb 8A0A(B BBBG LL[BBE E(D0D8Gv 8A0A(B BBBC D( \hFBB B(A0A8DPK8A0A(B BBBDp nFBB B(A0A8DPQ8A0A(B BBBD nFBB B(A0A8DPQ8A0A(B BBBD!fFBB B(A0A8DPI8A0A(B BBBDH!rFBB B(A0A8DPU8A0A(B BBBD!4FBB B(A0A8D`c8A0A(B BBBD!lFBB B(A0A8D`8A0A(B BBBD "FBB B(A0A8D`8A0A(B BBBDh"FBB B(A0A8D`f8A0A(B BBBD"dFBB B(A0A8D`v8A0A(B BBBD"fFBB B(A0A8DPI8A0A(B BBBD@#FBB B(A0A8D`f8A0A(B BBBP#,hFBB B(A0A8DPjXH`OXAPI8A0A(B BBBT#HFBB B(A0A8D`zhHpDxCZ`I8A0A(B BBBH4$FBB B(A0A8D`v 8A0A(B BBBA H$FBB B(A0A8D 8A0A(B BBBA H$hFBB B(A0A8D 8A0A(B BBBA L%0FBB B(A0A8D 8A0A(B BBBA Hh%FBB B(A0A8Dpx 8A0A(B BBBA H% FBB B(A0A8D 8A0A(B BBBA H&FBB B(A0A8D 8A0A(B BBBA HL&FBB B(A0A8G 8A0A(B BBBA D&FBB B(A0A8DP{8A0A(B BBBD&FBB B(A0A8DP8A0A(B BBBD('lFBB B(A0A8D`8A0A(B BBBDp'FBB B(A0A8Dp8A0A(B BBBd'| FBB B(A0A8G( 8A0A(B BBBI b 8A0A(B BBBB  ( QEK<(( OEIX(\ QEKt( QEK( QEK(( QEK0(l EX C U K  A  A (8)$$) 8)0L)80`)TLt) FBB B(A0A8G 8A0A(B BBBF ))'T))*,*@/(*1 <*x=p DP*G\FBB B(A0A8^ 0A(B BBBK *Y *he *p L*`|Eb I  H x H  A I A B A W A d A dL$+ЂEb I  H x H  A I A B A W A d A dt+@ +< +8 +D +P +\ T+h E` K O A ? A  K e A o A q A v A b A D,L X,OEIt,, n,h,,,T,XgC A E  F@ ` A  A  A  A W A TD-gC A E  G@ e A { A  A  A W A T-(1gC A E  F@  A  A  A  A W A T-gC A E  F@ ` A  A  A  A W A TL.xgC A E  F@ ` A  A  A  A W A T.gC A E  F@ ` A  A  A  A W A .Ha EC Ef M / a EC Ef M LD/EC e C  I   A _ A  A  A Y A L/EC e C  I   A _ A  A  A Y A L/@!EC e C  I   A _ A  A  A Y A L40%EC e C  I   A _ A  A  A Y A L0*EC e C  I   A _ A  A  A Y A L0P/EC e C  I   A _ A  A  A Y A $14EC El G LH19#EC d D  G ! A _ A  A  A X A 1>WEQ1>EM F p1@?EM F pH1?FBA A(D0 (C ABBK L(A ABBD@2T@FBB B(A0A8DPr8A0A(B BBB2@ 2@L2A FBB B(A0A8G 8A0A(B BBBF 3I3RT(3T<3WP3TZd3] x3hp D3r\FBB B(A0A8^ 0A(B BBBK 3 3| 3 L4tEb I  H x H  I I A B A ? A l A dL`4ĭEb I  H x H  I I A B A ? A l A d4 4 4 D 4HD 5D 5D X(5'E` K M C F J  G & A  A } A } A c A 5 l 5,OEI5`5ln5 5d"6 $6%T,6'gC A E  F@ ` A  A  A  A W A T6 -gC A E  G@ e A { A  A  A W A T621gC A E  F@  A  A  A  A W A T47p9gC A E  F@ ` A  A  A  A W A T7>gC A E  F@ ` A  A  A  A W A T7@DgC A E  F@ ` A  A  A  A W A <8Ia EC Ef M `8Sa EC Ef M P8@^EC e C  I  A  A  A  A Y A P8cEC e C  I  A  A  A  A Y A P,9Xi(EC e C  I  A  A  A  A Y A P94o(EC e C  I  A  A  A  A Y A P9u(EC e C  I  A  A  A  A Y A P(:z(EC e C  I  A  A  A  A Y A |:ȀEC El G P:t#EC d D  G  A  A  A  A X A :PWEQ;EM F p0;EM F p4P;tFBA A(w  ABBJ D;܎FBB B(A0A8DPr8A0A(B BBB;$5;P;̏,\ < FBB B(A0A8 0A(B BBBJ s 0A(B BBBA l<<T*<p(<<<tZ<o< = =P4=Ec H w I w I @ H B A B A 8 A k A eP=Ec H w I w I @ H B A B A 8 A k A e=(z =z >z >lz ,>z @>Dz TT> Eb I  G  G  I f A o A  A  A d A >8, >6QEK>(7<>4: EC Mc A t C  A 0?CvD?pEX?|HXl?J?M[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D DAp[gC D B  A@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D C|igC E A  C@  D k E  A  A  A  A [ A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D DHx[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D F[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D TH[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D  JEC Eg L qEc H o A y G @ H B A B A , A o A ePLO8BqEc H o A y G @ H B A B A , A o A eOdFz OQz O<] Oh Ot P TP̋ Eb I  G  G  I f A o A  A  A d A pPT PQEKPD<PP EC Mc A t C  A P vQQX0QDQ[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D SgC D B  A@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D TgC E A  C@  D k E  A  A  A  A [ A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D Vd[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D TX[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D Z[gC D B  B@   C \ D  A l A  A  A Z A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D A K A D A D A D A D A D A D A D A D A D A D A D A D A D  [8EC Eg L \4!EC Eg L P$\04XEC f B  I  A _ A  A  A Z A Px\<:XEC f B  I  A _ A  A  A Z A P\H@EC f B  I  A _ A  A  A Z A P ]FEC f B  I  A _ A  A  A Z A Pt]LEC f B  I  A _ A  A  A Z A P]REC f B  I  A _ A  A  A Z A ^8YEC En E P@^`~EC d D  G  A _ A  A  A X A ^fYES^$g^g,^hFAA r ABC D_|hFBB B(A0A8DPz8A0A(B BBBP_h3d_iDx_liFBA A(  ABBI   ABBA D_lFBA A(  ABBB `  ABBA `,qb`r0`DtD`@xX`yl`\`D' FBB B(A0A8s 0A(B BBBF  0A(B BBBH ``ЕaLaH#E` K  G t D v J G A ~ A  A g A bLla(#E` K  G t D v J G A ~ A  A g A ba a a a  b  b T4bEb I T D  B  C i A p A q A ! A d A bh? bQEKbH<bbEC M A  A  A cD$cV8cL LcH Vp`c"gC A E H H@ 7 I g A  A D A  A  A  A W A hc+^gC A E J F@ 7 I g A * A  A  A  A W A p@d2Z gC B D P P@ ? A o A * A D A  A ! A ! A X A pd;gC A E H H@ 7 I g A  A D A  A  A  A W A p(eLDgC A E H H@ 7 I g A  A D A  A  A  A W A peLgC A E H H@ 7 I g A  A D A  A  A  A W A f$UEC Ed O 4f]EC Ed O PXffEC d D g I  A _ A r A e A X A PfnEC d D g I  A _ A r A e A X A Pg4wEC d D g I  A _ A r A e A X A PTgEC d D g I  A _ A r A e A X A PġEC d D g I  A _ A r A e A X A PgEC d D g I  A _ A r A e A X A PhdM EC En E PthEC b F x H  A _ A ~ A w A V A h,YEShph4 ihFAA  ABE QABDDiFBB B(A0A8DPr8A0A(B BBBiH3itDiFBA A(  ABBI   ABBA DiH2FBA A(L  ABBE   ABBA Dj@bXjljXjTjj\jX' FBB B(A0A8s 0A(B BBBF  0A(B BBBH k(0kDkLXk\E` K  G t D ~ J G A ~ A | A c A bLk,E` K  G t D ~ J G A ~ A | A c A bk  l  l 4l HlL" \l0 Tpl=Eb I T D  B  C i A p A q A ! A d A l\L? lYQEKlYH< m\EC MD A  D  A Lmc`meVtmg mjVpmmgC A E H H@ 7 I g A  A D A  A  A  A W A hnu^gC A E J F@ 7 I g A * A  A  A  A W A p|nx}Z gC B D P P@ ? A o A * A D A  A ! A ! A X A pndgC A E H H@ 7 I g A  A D A  A  A  A W A pdoЎgC A E H H@ 7 I g A  A D A  A  A  A W A po<gC A E H H@ 7 I g A  A D A  A  A  A W A LpEC Ed O ppdEC Ed O Pp EC d D g I  A _ A r A e A X A PplEC d D g I  A _ A r A e A X A PgC B D  L@  M   A  A D A  A  A  A X A d x(EngC B D  I@  M   A  A  A  A  A X A 4tx0K^ EC M N  F lxXVgC B D  L@  M   A  A D A  A  A  A X A ly\gC B D  L@  M   A  A D A  A  A  A X A lybgC B D  L@  M   A  A D A  A  A  A X A 4yhEC M G  D H4z`q/Ej A E K v J x H I A n A e A j A dPzDs EC d D G I  A _ A  A  A X A Pz EC d D G I  A _ A  A  A X A P({ EC d D G I  A _ A  A  A X A P|{X EC d D G I  A _ A  A  A X A P{ EC d D G I  A _ A  A  A X A P$| EC d D G I  A _ A  A  A X A x|lEC Em F P|FEC d D j F  A _ A  A  A X A |WEQ }( }44} FAA  ABO QABDl}FBB B(A0A8DPz8A0A(B BBB} 4}L4}~iIAEbAE~(~ .<~(dP~d~\x~LT~P~FBB B(A0A8 0A(B BBBC  0A(B BBBB % 0A(B BBBB f 0A(B BBBA (T<(TPtTLd Eb I  D v B x H I A ~ A U A j A dL@ Eb I  D v B x H I A ~ A U A j A d<,@4Th,D| Eb I H H @ H K A l A g A r A nĀp؀OEI80EC G H  H q A 0D!Xl# lh%$* l ,gC B D  L@  M   A  A D A  A  A  A X A dP2ngC B D  I@  M   A  A  A  A  A X A 4lX8^ EC M N  F lCgC B D  L@  M   A  A D A  A  A  A X A lIgC B D  L@  M   A  A D A  A  A  A X A lOgC B D  L@  M   A  A D A  A  A  A X A 4VEC M G  D 4,^EC M G  D Pdg EC d D G I  A _ A  A  A X A P\t EC d D G I  A _ A  A  A X A P EC d D w I  A _ A  A  A X A P`TEC d D w I  A _ A  A  A X A PEC d D w I  A _ A  A  A X A PEC d D w I  A _ A  A  A X A \HEC Em F PFEC d D j F  A _ A  A  A X A ԆWEQ,FAA t ABA DH\FBB B(A0A8DPz8A0A(B BBB44\~iIAEbAEp.d,@d\TThP|8FBB B(A0A8 0A(B BBBC  0A(B BBBB % 0A(B BBBB f 0A(B BBBA @TT,TL@$Eb I  D v B x H I A ~ A Y A f A dHEb I E K v J x H A A f A ] A j A d܉xp  ,h @ DT` Eb I H H @ H K A l A g A r A n(OEI8̊EC G H  H q A X0 DX ll!gC B D  L@  M   A  A D A  A  A  A X A d܋'ngC B D  I@  M   A  A  A  A  A X A 4D-^ EC M N  F l|8gC B D  L@  M   A  A D A  A  A  A X A l(?gC B D  L@  M   A  A D A  A  A  A X A l\XEgC B D  L@  M   A  A D A  A  A  A X A 4̍KEC M G  D HT/Ej A E K v J x H I A n A e A j A dPPU EC d D G I  A _ A  A  A X A P@c EC d D G I  A _ A  A  A X A Pp EC d D G I  A _ A  A  A X A PL} EC d D G I  A _ A  A  A X A PT EC d D G I  A _ A  A  A X A P EC d D G I  A _ A  A  A X A H EC Em F PlFEC d D j F  A _ A  A  A X A WEQܐD4FAA  ABO QABD<hFBB B(A0A8DPz8A0A(B BBB44h~iIAEbAE. d $4\HT\8PptFBB B(A0A8 0A(B BBBC  0A(B BBBB % 0A(B BBBB f 0A(B BBBA |T T TL4`Eb I  D v B x H I A ~ A U A j A dLEb I  D v B x H I A ~ A U A j A dԓ`X$P8DLH Eb I H H @ H K A l A g A r A nOEI8ĔEC G H  H q A t(  <P ldgC B D  L@  M   A  A D A  A  A  A X A dԕngC B D  I@  M   A  A  A  A  A X A 4<^ EC M N  F lt &gC B D  L@  M   A  A D A  A  A  A X A lP,gC B D  L@  M   A  A D A  A  A  A X A lT2gC B D  L@  M   A  A D A  A  A  A X A 4ė8EC M G  D 4(AEC M G  D P4I EC d D G I  A _ A  A  A X A PV EC d D G I  A _ A  A  A X A PܘXdEC d D w I  A _ A  A  A X A P0rEC d D w I  A _ A  A  A X A PEC d D w I  A _ A  A  A X A PؙLEC d D w I  A _ A  A  A X A ,EC Em F PPdFEC d D j F  A _ A  A  A X A `WEQԚ ,FAA t ABA DFBB B(A0A8DPz8A0A(B BBB`Tt@DFBB B(A0A8DP8A0A(B BBBHЛDFBB B(A0A8DP 8A0A(B BBBB HFBB B(A0A8D` 8A0A(B BBBB h\|h DdFBB B(A0A8DP8A0A(B BBBH؜FBB B(A0A8DP 8A0A(B BBBB H$`FBB B(A0A8D` 8A0A(B BBBB p zDFBB B(A0A8DP8A0A(B BBBHFBB B(A0A8DP 8A0A(B BBBJ H,xFBB B(A0A8D` 8A0A(B BBBB x  DFBB B(A0A8DP8A0A(B BBBH,FBB B(A0A8DP 8A0A(B BBBB H4FBB B(A0A8D` 8A0A(B BBBB t D FBB B(A0A8DP8A0A(B BBBHFBB B(A0A8DP 8A0A(B BBBB H<FBB B(A0A8D` 8A0A(B BBBB 6DFBB B(A0A8DPr8A0A(B BBB D FBB B(A0A8D`8A0A(B BBBTp7htD|FBB B(A0A8DPz8A0A(B BBBġ` Dء\FBB B(A0A8D`8A0A(B BBB 54&DHFBB B(A0A8DPr8A0A(B BBBd D`FBB B(A0A8D`8A0A(B BBB6DFBB B(A0A8DPz8A0A(B BBB\ DpFBB B(A0A8D`8A0A(B BBB\6̣DFBB B(A0A8DPz8A0A(B BBB(l D<hFBB B(A0A8D`8A0A(B BBBS,6XXGԤF \&FBB B(A0A8D` 8A0A(B BBBA H8A0A(B BBB\\&FBB B(A0A8D` 8A0A(B BBBA H8A0A(B BBB\&FBB B(A0A8D` 8A0A(B BBBA H8A0A(B BBB\&FBB B(A0A8D` 8A0A(B BBBA H8A0A(B BBB\|X&FBB B(A0A8D` 8A0A(B BBBA H8A0A(B BBB\ܦ(FBB B(A0A8D` 8A0A(B BBBB D8A0A(B BBB <sEAkA `sEAkA` \ X T ԧP L H D $@ 8< L8kEAcAp |kEAcAШ WEAOA WEAOA,8EHE(d@uFAA iABE EA{AHЩFBB B(A0A8DPO 8A0A(B BBBE H(FBB B(A0A8DPP 8A0A(B BBBD 8hEj A G I  F  A  A 8pcM H Xp E  D  A T@,vlF$ vlF@tT h| D^EAVA ^EAVA ث^EAVAD42$`8 Lx"D`#^FBB B(A0A8D@A8A0A(B BBB#cD#yFBB B(A0A8DP\8A0A(B BBB@0$OFBB A(A0DPf 0A(A BBBB @H<&OFBB A(A0DPf 0A(A BBBB H(Ek H L (Ek H LHԭ)oFBB B(A0A8D`R8A0A(B BBBD *FBB B(A0A8D`8A0A(B BBBHh\+FBB B(A0A8Dp8A0A(B BBB,Ȯ\-H v B  .1L.9 x. /W4@1 H<1D\1wFBB B(A0A8DPZ8A0A(B BBBD1wFBB B(A0A8DPZ8A0A(B BBBD(2wFBB B(A0A8DPZ8A0A(B BBBD4`2FBB B(A0A8DP8A0A(B BBB8|2%Ej A G I  H  C  A @7F,{IBJAeY<>$@vmE@TDvmE\HpKOS W`EAXA бW`EAXA X`EAXA\XE,X;@YT[h]D|(^^FBB B(A0A8D@A8A0A(B BBBIJ@^gDز^yFBB B(A0A8DP\8A0A(B BBB@ ^FBB A(A0DPl 0A(A BBBD @d aFBB A(A0DPl 0A(A BBBD lcEn E P ̳dEn E PHdFBB B(A0A8D`b8A0A(B BBBD<eFBB B(A0A8D`8A0A(B BBBHfFBB B(A0A8Dp8A0A(B BBBд$hhH w A di1i9(i<8kNPtl dplDxlwFBB B(A0A8DPZ8A0A(B BBBD$mwFBB B(A0A8DPZ8A0A(B BBBD\mwFBB B(A0A8DPZ8A0A(B BBBDPmFBB B(A0A8DP8A0A(B BBBmvEF E eLn{̶n{$o{oVEPoVEP,pH@TpHTpHhpH |qeEA]A TqeEA]A ķqeEA]AqA(r<TrF$rW8rCPLsaFBB B(A0A8D@cHHPOHA@I8A0A(B BBB4sRTsFBB B(A0A8DPrXH`DhCpYPI8A0A(B BBB s Dt4tH|uP\vFBB B(A0A8DK_@8A0A(B BBBTwFBB B(A0A8D`pMxCI`p8A0A(B BBBT,xFBB B(A0A8DN`- 8A0A(B BBBI `y7t zC\z;z5zOĺz7غ{ {qP{zFBB B(A0A8DPrXJ`WXAPI8A0A(B BBBPT{zFBB B(A0A8DPrXJ`WXAPI8A0A(B BBBP{zFBB B(A0A8DPrXG`ZXAPI8A0A(B BBB`|FBB B(A0A8DPr`QXAPn`QXAPN`LXBPJ8A0A(B BBBH`t|FBB B(A0D8D`s 8A0A(B BBBF H(}FBB B(A0D8D`z 8A0A(B BBBG H}FBB B(A0D8D`s 8A0A(B BBBF HD~FBB B(A0D8D`z 8A0A(B BBBG DuFBB B(A0A8DPX8A0A(B BBBDؽuFBB B(A0A8DPX8A0A(B BBBD uFBB B(A0A8DPX8A0A(B BBBDhRFHO B(D0A8DpP 8A0A(B BBBF 4BEMF r DAA M DAF @CEN0 AA <(DFFB A(A0} (A BBBD dh,EFBB E(A0E8Gp  8D0A(B BBBD  8A0A(B BBBJ $dK#HB B(D0D8E@IdlKFEB E(A0A8I` 8C0A(B BBBK A 8A0A(B BBBE H`$NFBB B(A0A8DP 8A0A(B BBBJ hPtPpP|P>PP>$P8PLP`QtQQ(Q4QaHR F $Q8EG Z AI DCQ$ER I CQ$EV E C4Q HQ \QpQQ Q Q $QH0o I Y G V A $ AAH (EDGP AAK (PEDG` AAC (0EDG` AAK (\EDG` AAK (EDG` AAK 0FDD G0|  AABK (EDG`f AAH (@ EDGpv AAH 4@#EDJb AAB (x,'EDGP AAC 0(FDD G@  AABA (*EDGP AAC (,EDGP AAC 00D.FDD G@  AABC (d0EDGP AAC (1EDGP AAK 03FDD GP  AABA (d5EDGP AAC ((7EDG` AAC 0H8 FDD GP  AABA (|:LEDG` AAK (<EDG` AAC 0> FDD GP  AABA (@LEDG` AAK (4BEDGP AAK (`dDEDGP AAK (FEDGP AAK 0GFDD G`  AABA (IEDGP AAC (LKEDG` AAK (DMEDG` AAK (pNEDG` AAK 0hPFDD G`  AABA (4REDG` AAC (SEDG AAK (( UEDG AAK (T PWEDG AAK D YFDD G  AABA GDN( ZEDG AAK ( p\EDG` AAK ( 4^EDG` AAK (L _ EDG` AAC 0x a"FDD G`  AABH ( cEDG`K AAC ( fEDG AAK ( PhEDG AAC ,0 j EDG AAC 0` kRFDD G  AABG ,  nEDGS AAK , pEDJ AAE , rEDJ AAE ,$ tEDJ AAE 0T PvFFD J  AABI , xEDJF AAE ( L{1EDG0 AAB ( `|1EDG0 AAB ( t}1EDG0 AAJ (< ~1EDG0 AAJ (h 1EDG0 AAJ 0 FDD G0|  AABK ( ,1EDG0 AAB ( @1EDG0 AAB ( T1EDG0 AAJ (Lh1EDG0 AAJ (x|1EDG0 AAJ 0FDD G0|  AABK ( 1EDG0 AAB ( 1EDG0 AAB (041EDG0 AAB (\H1EDG0 AAB (\1EDG0 AAB 0pFDD G0|  AABK (1EDG0 AAB (1EDG0 AAB (@1EDG0 AAB (l(1EDG0 AAB (<1EDG0 AAB 0PFDD G0|  AABK (̖1EDG@ AAJ ($1EDG@ AAJ (P1EDG@ AAJ (|1EDG@ AAJ (1EDG@ AAJ 00tFDD G0|  AABK (|1EDG@ AAJ (41EDG@ AAJ (`1EDG@ AAJ (1EDG@ AAJ (̡1EDG@ AAJ 0tFDD G0|  AABK (,1EDG@ AAB (D@1EDG@ AAB (pT1EDG@ AAJ (h1EDG@ AAJ (|1EDG@ AAJ 0FDD G@|  AABK (( 1EDG@ AAB (T 1EDG@ AAB (41EDG@ AAJ (H1EDG@ AAJ (\1EDG@ AAJ 0pFDD G@|  AABK (81EDG@ AAB (d1EDG@ AAB (1EDG@ AAJ ((1EDG@ AAJ (<1EDG@ AAJ 0PFDD G@|  AABK (H̸1EDG@ AAB (t1EDG@ AAB (1EDG@ AAJ (1EDG@ AAJ (1EDG@ AAJ 0$0FDD G@|  AABK 0XFDD G0|  AABK 0(FDD G@|  AABK 0FDD GP|  AABK 00rFDD G@|  AABK 0(|sFDD GP|  AABK 0\sFDD Gp|  AABK EG D AG EG C AH EG C AH EG C AH ( TEDG@ AAK (LHEDGP AAK (x<EDG`S AAK (EDGp[ AAC 4<EDJb AAE (EDGpc AAK ,4EDGs AAK 4dlEDJB AAE (LEDG` AAK (LEDGp AAK <@\EDGyMDI` AAK 4`:0H<EN  AB Z AE H|VFEB B(D0D8Gpn 8A0A(B BBBJ x,BBB B(D0A8Dp 8A0A(B BBBG u 8A0A(B BBBA  8F0A(B BBBH D`:Et``tJBDB B(A0A8DP 8F0A(B BBBE D 8C0A(B BBBH |dYFLE B(A0D8DP 8C0A(B BBBH & 8A0A(B BBBA TuE{ H l|tPFLB B(A0A8Gpn 8A0A(B BBBI ` 8C0A(B BBBD | 8C0A(B BBBA T`4FBB A(A0D@ 0D(A BBBE T 0A(A HBBF LHFBB B(A0D8JHDDBB[ 8A0A(B BBBC cJDDDB[@FBB B(A0D8J*GDDBBa_ 8A0A(B BBBF GIIBBa\H @p SFBB A(A0G@ 0A(A BBBG 0 FKA D@  AABF  <EW A ^  0  0FAA G@  AABF dP FIB B(A0A8D@@ 8A0A(B BBBE | 8A0A(B BBBJ H lFIB E(D0D8G@ 8C0A(B BBBG L!FIA A(D0 (A ABBE | (A ABBF T!%`h! _FIB B(A0A8D@w 8A0A(B BBBF D 8A0A(B BBBJ ! x!AFEE E(A0D8G@W 8J0D(E BBBO B 8D0A(B BBBI y8F0A(B BBB,\"~BKA N ABA L"( FBB E(A0D8MY 8A0A(B BBBD "-("-JEA AB#H.h0#.BBB B(A0A8G 8A0A(B BBBC { GGHGBkh#DFBB B(A0A8G 8A0A(B BBBK NDBDAXH$LFBB B(A0A8D@p 8D0A(B BBBA T$NEU N H H @x$lNFBE D(D0G  0A(A BBBE ,$8PEAGy AAH L$QFBB B(A0A8DE 8C0A(B BBBE <%UP%Vd%WuH@@ H %Y %Y % Y %Y'HN% Y&EN E M%0Y& 4 4 p* c0`LLLL}`k@7 < p2 3 ( PX@p00@!2 6Ps`P_p) ; 0 p1 P' TP P 16B`v'@/ % @& p |Pp}@`-5@ e`f@P h` 0(x0`s @  Lj`S p9 P/ / % _0pP06aG 7 - P. 0$ \0`  /5Pp|sLp @e`b     d@a `  q@ @5P6` c`0p  @ p  4@60 @`"@& (*`PrP `9:VLEL?L MMO04 * 0+ ! M`-5` #&0) +t0L(LKK` kL@ pl`  P P x`PL L@6jСpp+ !  *@_' @   `SЋ "   P KKKKKKKP+0zP0up    >~` `666 @` #`')``x@,0`ec w@ 0-5 0MOMPOMOMPOMOOMPP 277&6`$6 PVP`%PP%P@%#P0%$P6Jp%*P7 N7N`}N|tN |POqM8@@0 @ 0 0p@0 0@Ў` ` ``@ 0p p`P `0  p~`@@ y{}`p`0$pi0kplmn@poqspu@10b@cdeg wpikmp% ZP[\]_P _acpe/P R`STU Wg Y[]0& P `JKL N`O0OQSU.0p  ` BC E`FG W@IKMP`@:;0=p>? @P0A0C E  Gp,0p 24@567`p`P;@=0?pp'P@*,P-./0 p2468*p! `" $`%&'PGCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-16)GA$3a1PGA$3a1J GA$3p1067`.GA*GA$annobin gcc 8.5.0 20210514GA$plugin name: annobinGA$running gcc 8.5.0 20210514GA*GA*GA! GA*FORTIFYGA+GLIBCXX_ASSERTIONS GA*GOW*GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realign GA$3p1067JGA*GA$annobin gcc 8.5.0 20210514GA$plugin name: annobinGA$running gcc 8.5.0 20210514GA*GA*GA! GA*FORTIFYGA+GLIBCXX_ASSERTIONS GA*GOW*GA*cf_protectionGA+omit_frame_pointerGA+stack_clashGA!stack_realignGA+GLIBCXX_ASSERTIONS`Y8 GA*GOW** GA*FORTIFY`Y8GA*O7  ` 3 N m      / `H k_ ` i k } p  }      J# ? Y  f      J J J  ]# P / ]J mc ` o m  pA     1 > U %j %r % G 0 G w P' w    4 < S h p  ? o ? b/ @"J bj  pI5       $! : AQ A[ Au  P8   d  ! ! ! G1 0: GS Yj P t Y i `  i y p  y   d  /  C  !J  a  7v  ~  7  I  @  I  Y  P  Y  i  `  i8  N  pdW  n    !    '    '  c  03  c  *  p53  L  c  2m    T  d  T    `!        (  ?   I  a  w            D   d  D   q   P !  q 6  K  S  k                   %  / G ] f ~ 7! !7 7! ! @!o ! ! !1  !# R"9 !bB R"_ "z `"i " " " " " " "( #= "E #] #s # | # # #c # # #  #) #? # H #a #x #  # # #  # # #  # #+ # 6 #P #h # s # $ $  $ $ $  $ $ $d $6 %L $vU %n % %z % % %! % % %1 %  1&" &1+ 1&B W&W @&_ W&w & `&5 & & &5 & & &  & &3 & ; &S 'i ' r ' ' '  ' )' '  )' 9' 0' & 9'? I'V @' ` I'x Y' P'  Y' i' `'  i' '  p'A '4 (O 'A] (w 7( (' 7( ( @(V ( ( (L (( _)= (oE _)[ )o `)*v ) ) )  ) ) )  ) ) )  )7 )N ) X )r ) )  ) ) )  ) ) )  ) *6 * @ *W t*l *dt t* * *{ * !+ +! !+ ]+ 0+- ]+' w+< `+D w+\ +r +K{ + + +  + + +  + + +  +5 d,K ,dT d,k , p,! , , , , , ,  , ,' , 0 ,I ,` , j , T- ,d T- - `-! - - - - -1 - : -S .j -St . ). .  ). . 0.X . .  .  ./ .F .XP .i '/ /' '/ / 0/V / / /L /  /+  / 5  /M  /c  / l  /  0  0  0  t0  0d  t0  0! 0!! 00! 0G! 0Q! 0k! 0! 0 ! 0! 0! 0 ! 0! 0! 0 " 0" 17" 1 B" 1[" m1r" 1]|" m1" y1" p1 " y1" 1" 1b" 1# 1# 1 *# 1C# a2Z# 2ad# a2|# 2# p2d# 2# 3# 2!# 3# '3# 3$ '3$ 936$ 03 @$ 93X$ I3n$ @3 w$ I3$ Y3$ P3 $ Y3$ 3$ `3d$ 3% 3% 3!"% 3;% 4R% 4\% 4v% )4% 4 % )4% 94% 04 % 94% I4& @4 & I4(& 4>& P4dG& 4^& 4s& 4!{& 4& 5& 4& 5& 5& 5 & 5' )5' 5 #' )5<' 95S' 05 ]' 95v' 5' @5d' 5' 5' 5!' 5' 5' 5( 5"( 6:( 6 E( 6^( 6u( 6 ( 6( )6( 6 ( )6( 6( 06d( 6 ) 6) 6!') 6?) 6U) 6^) 6w) 6) 6 ) 6) 7) 7 ) 7) 7) 7 * 7)* 7G* 7X* 7{* |8* 8|* |8* 8* 8S + 8*+ 9G+ 8W+ 9u+ ':+ 9+ ':+ :+ 0:+ : , u;&, :5, u;R, <m, ;{, <, <, <, <, ,`5h- !6- 6,- Y6<-X6J-6X-@6@e-W6n-6@z-W6@-@W6@-6@-6@-6@-W6@-V6@-V6@-@V6(.@6(.6@".V6@4.6`J.U6`[.@6`p.@U6`.6`.T6(.T6`.6(.`6(.`T6(.6q-6@[-6@}-T6@-S6@.S6(.@6( /6(/@S6(+/6x6xr36X36@3`>6X-6@3 >6@- =6@-`6@36X-<6@36X363 <63 6- ;6@3`;6-5@.5@%.:6@ 4:6X45(%4@:6(54!6D4Y6N4J5^4@5Xt4 5*45(45B4p54`54P54@5405 5 555/55$F55$\5`5$s585 5(5 55$5 655 5@T6 56 454555 55 6`5< 7 5?"7R68585$65565 E65 \65 m65<6@5?65?65-65 6@N6 6@6 6`5?6M67 5?7L6-75 B75S75e75y7K68768757`K68768757 K687`68758K68@685/8J6@:86@J8`5!`8 5?p8I6z85?8H68585858585 85 9@59#95&:959P959g9 6x9@5?95?95 9C6 9` 6 95E9`5(9@5 :`B6 :6 ':5?<:A6K:5&K656_:X5 r:H5 : 5$:5-:5!:55`5&5=656:P5:`=6 :6 4@5405 ;(5;<6 );@6 ;;5K;5$];5B4`55P5q; 5!;5 ^75; ; ; ; ; < =< Z< {< < < < @< = @9= \= @yr= = Y= Y= > C> f> w> #> > > > >  ? (? >? X? ? Ӝ? ? Ӝ? '@ J@ |@ @ @ @ A 6A fA !A A !A AB 04B A_B -B PB -B !C 0,C !_C !C 0C !C D 0D OD ~D D D E "E DE dE wE E ծE E ծE ӰF 3F ӰTF sF @F F F eF G #G e8G `G [G [G [G ȻG ȻG >H >7H WH rH H H H H I 'I II mI _I _I I I  J &J ?J [J uJ J J J J J (K (5K UK qK K K K K L !L ;L VL 2oL 2L *L *L L L oM o7M 2QM 2tM M M M M 1M 1N 9N UN oN N AN AN N O O =O [O zO O O O O ' P ',P `IP `hP P P P P 4P 4Q >-Q >KQ gQ Q hQ hQ &Q &Q R )R ?R \R wR R \R \R *R * S z6)S z6IS BgS BS HS HS OS OS XT X1T aMT aiT jT jT sT sT }T }U #1U #QU oU U U U OU O V l'V lKV ޡmV ޡV V V ZV ZW H;W H[W yW W ߮W ߮W W X ѻ5X ѻZX }X X _X _X  Y /Y QY vY Y Y Y Y Z :Z YZ Z Z Z Z [ %[ J[ m[ [ [ [ W [ W \ 1\ M\ y g\ y \ c \ c \ \ \ ] %] A] ]] w] ] ] ] "] "^ %+^ %L^ v(k^ v(^ B+^ B+^ 6^ 6^ PA _ PA)_ SE_ Sf_ :__ :__ j_ j_ Zv` Zv#` |A` |b` ` ` ` ` ` a )a La Tma Ta a a a a 'b '=b [b |b b b b c ~#c ~Gc &ic &c c c c d 7d Ud qd d ?d ?d q d q e ?Ce ?he e e e e !'f !'Cf 1gf 1f 7f 7f `=f `= g C-g CUg I{g Ig Og Og Vg V%h \Ih \nh ch ch wch wch di d0i dKi dfi 6ei 6ei ei ei fi f j f)j fEj h_j hj pj pj rj rj tk t4k xSk xok *zk *zk k k zk zl -l Nl ܙml ܙl ̡l ̡l l  m I)m IJm ٲim ٲm Zm Zm m m Zn Z4n Un on Zn Zn n n o %o }Co }do o o o o  p /p Qp tp "p "p %p %q *(q *(=q 7Yq 7|q RGq RGq Wq Wr Kg+r KgPr vsr vr r r (s (+s HOs Hos s s s s ht h=t ct t (t (t t  u ,1u ,Vu yu u u u u v ,3v ,Nv gv v v v v v jw j2w Mw nw w w w w x )x (Ix (fx Jx Jx <x <x x y +y My my y y y 'y 'z Q,/z Q,Qz 0qz 0z Z<z Z<z Gz G{ S{ SC{ J_e{ J_{ j{ j{ v{ v{ | <| ][| ]}| | | ܒ| ܒ} )} N} fq} f} } } ~ %~ E~ d~ k~ k~ 2~ 2~   4 +Y +     9 ` (+ (+ 1ŀ 1 7  70 t>Q t>z E E K߁ K $R) $RP Yu Y N` N` `  `)  [ {   ˓   !  ;  ] o) } o)  ?7  ?7 ̔ E  E  S ' S F ?a c ?a  a  a  c ߕ c  k % k H m i m  p  p Ж ,s  ,s  u 1 u N n~ i n~  Ά  Ά ͗ *  *   5  Y {  Ϊ Ø Ϊ   . Q p !  !  љ   8 I ] I {   ݚ   %  I  k   i  i ϛ        9  Q  j        ڜ z  z  ) H e      t ם t     0 l I l a  w      ̞ "  "  ' % ' D d+ a d+  /  /  2 ۟ 2  4  4 3 G6 K G6 i 7  7  g9  g9 ݠ :  :  < - < L > i >  +@  +@ ơ A  A  B ! B A E _ E  F  F Ȣ vH  vH  J + J P XO s XO  lQ  lQ Σ X  X  ~^ + ~^ M i m i  p  p ٤ w  w  } C } g j  j  ѥ  E  E 0 Q r   U ݦ U     ; ]  V  V ɧ    3  O i  "  "   Ѩ    ! ? ] z y z   ϩ     > ) > G  c   ;  ;   ٪    ' P C P a  }   4  4 ݫ   $ ; $ [ ' y '  *  * Ԭ ',  ',  - ) - F G/ a G/  0  0  g2 ׭ g2  3  3 6 6 U 6 u 7  7  7 Ӯ 7  ;  ; 8 = [ =  ?  ? į A  A  xF / xF P H o H  0O  0O ̰ U  U  ` 1 ` W g { g  @n ñ @n  t  t 2 } U } { 6  6  ݲ  # E e   ҳ   ~ 7 ~ ]     f ɴ f   0 R K R h   y  y ѵ     T - T N m  n  n ̶ M  M  ~ / ~ P  o   {  { Է     4 ' 4 H  g      ˸ t  t  ! 1 ! U 4& w 4&  )  ) ߹ '+  '+  , ; , ] G. } G.  /  /  g1  g1 " 2 = 2 ` 4  4  6 ǻ 6  ?8  ?8 / 8 Q 8 u f<  f<  A=  A=  > 1 > W @ { @  E ˽ E  G  G 2 N Q N w T  T  N`  N`  f 5 f ] m  m  0t ӿ 0t  | ! | J  q     e  e &  I  t ŵ  ŵ  u  u  % - % V }      w  w ;  Y  y   u  u     - T O T q   n  n  t  t 8 Y {       ! > d Y d {     N  N   %  I  k   d  d  ?  ?  ! A ! ` " } "  '$  '$  %  % ( G' M G' k (  (  g*  g*  {,  {, 9 . [ .  o.  o.  F2  F2  l4 ; l4 c 6  6  8  8  < ' < L > o >  E  E  L  L $ nW I nW s ^  ^  d  d  Pk = Pk f s  s  |  |  U % U M  s      6 W     " I s 7  7    R  R : W u     (  (  - K g       # = \ Z y Z  T  T  ~  ~   - E b x} x ^ ^    2 K i       1 P Wm W   4 4  v% v? 6W 6s       ; V T"o T" " " # # # #: $U $n 6& 6& & & & & '' 'E 'a '{ y( y( ) ) )) ))! ); )] &*} &* * * g+ g+ y+9 y+Y ?,w ?, , , , , 8-= 8-[ -w - - - - - // /O F0m F0 v1 v1 2 2 33 3U 4u 4 35 35 5 5 5- 5Q 5s 5 5 5 5 5 6; 6Y 6u 6 )6 )6 96 96  I6? I6` Y6 Y6 6 6 6 6! 6A 6g [7 [7 f7 f7 y7! y7H 7m 7 78 78 8 8, r9Q r9v 9 9 : : #;) #;C =[ =v > > C C I I K3 KO Mi M P P T T KX  KX+ \I \f _ _ c c d d% ndC ndd d d e e Rf Rf h+ hI ie i j j k k k k. lK lh _n _n p p uq uq Er ErA sa s t t gv gv v  v) wG wg x x Yx Yx y y G{5 G{S Y{o Y{ { { g| g| | |" g}; g}[ ~y ~ 5 5   # @ [ w g g G G 4 4$ $C $a $} $ $ $  & E g P P   ۦ ۦ 5 T Wq W t t ޫ ޫ G! GA ɬ_ ɬ} Y Y    " ; ^     Ϸ Ϸ ]- ]N 8m 8 q q    E' EF c    9 9  # 7= 7Y s  _ _ ֿ ֿ [1 [T u  [ [   9 X hu h    ' XM Xs   5 5 ) O s  < <   3 U 3u 3     A c 1 1      A= Ad     / /0 gO gt     5% 5H i      Q- QL i  Z Z    - E [ x       u1 uO k  u u   u  u/ O o   ? ?  ' ;E ;_ w       3 \M \j   V V    +  D  [  t  W  W          09  0T  m        E  E  Y  Y<  W  t          w  w  E'  EA  Y  s  O  O          <5  <T  q        y  y  ' K m  ) )   ) )7 U w 3 3   c c; [ w   w w    L; L\ {  X X   5 P i  V V   y y, E ` y       h) hG c  Y Y    y- yI c      { {@ a    G G  + H c  _ _   . .5 U w I I    1 rK rg Z  Z      1 / 1 K e       \ - \ O Yo Y    * qQ qq ) )   K K> a  c c   C j   P P  3 7U 7w   % %  u+  uP  s    &  &    ! 5! X! Qy! Q! ! ! ! " 9" U" o" " " " o" o # O -# O H# 1!a# 1!# "# "# ## ##  $ %$ E$ f$ $ $ $ $  % #8% #a% #}% #% #% #% #& $>& $[& $v& ${& $& $& $2& $' 0%/' $PO'Y6^' 0%~' =%' 0% ' =%' M%' @% ' M%( ]%3( P% B( ]%_( m%z( `% ( m%( }%( p% ( }%( :( ) %) :(9) *V) @(f) *) r,) *) r,) .* ,B:* .U* 2n* .Dz* 2* 2* 2* 2* 4 + 2!+ 4B+ :5a+ 4s+ :5+ 5+ @5+ 5+ }7, 6}, }7., 7F, 7Q, 7s, 7, 7L, 7, 8, 7,, 8'- O8N- 8/h- O8- 8- P8`-Z6- 8- C. 8 . C/. 9 ~9 |9 9 9 9 >: : 9 7: Q: i: t: : 2j: : 2: U: @: U; u: `; u6; O; [; u; P; ; ; !; a;Z6; !< h/< 08A< h^< y< p$< < < $< < F@  < = =  $= == = T= l= '> = = =  = = -=  = -> =&> 0 0> =O> l> @|> > > > > |> > |? m> 3? M? > e? ~? ;> ? ;? Z? @? Z? @ ` @ &@ A@ %O@ k@ MB@ -@ M@ u@ P%@ u@ A 5A kA 4A $A 4A B @B 9B [B pB@Z6B B B B C n(C =C nfC C psC C  D /D KD eD rD D D DHZ6D D zE #E zCE jaE rE jE E pkE  F ;F ^F yF F F F F FPZ6F G ;8G HG ;gG *G @G *G G 0kH =H qH $H H YB H YH \B `I ;I B \I I )C I I II J I9J hiJ PJ hJ fD pJ J D J K E 8K WK mbE tK mK K psK  L 8L ZL tL F L L |F L |L E9G M EM G P:M `M M kM M M N 7N iRN `N i}N $N pN $N N 0kO KO ~O O O nO O nP -P p[ [[ `k[ [ 8[ [ 8 \ (\ @6\ Q\ j\ v\ \ \ k\  ] :] \] x] )\ ] ] ak\ ] a] +ܖ p] +^ ( 08^ V^ \[ r^ ^ ^ k^ _ 88_ [_ 8w_ _ @_ _ _ _ _ C` $` CB` ^` Pm` ` {` k` {` .a Pa ka U_ a Ua _ `a a ` a  b c!_` $b c!Ab %"&f p!\b %"b "b 0"gb "b #b "g c #,c g#Mc #Wac g#c #c p#_c #c /$d #_d /$  ^ |     |_ ܀ | \   \@ Z `^(Z6t Z < ` <؁ , @ , 7 0G f ,   , R ɂ 0"ւ Z6 R   < * ` = < X ,q @ } ,  0̃  ,    ,8 S 0RaZ6t  | ̄ | |  |< |^ s | | ΅ |    Z67  ^ "  " $ "1φ $ Q%C $1 Q% & `%11 &I ' &1_ 'v ) '1 ) *; )ɇ * , *1  ,( A-B ,1O A-h . P-1 . / .1È /ۈ 1 /1 1 2: 1L 2h 3 21 3 15 41 15щ q6E @51 q6 7 61 70 8 71F 8g :  9 : ; :1̊ ; != ;1 !=, a>D 0=1O a>i ? p>1 ? @ ?1Ƌ @ B @ B5 Cr B1M Cg E C1 E QF E1 QFŒ G# `F1׌ G HX G1 H  TJ Ht= TJX Kq `J1} K L K1 LՍ N L1 N  QO" N1+ QOB PW `O1_ P R Pt RɎ QS R1 QS TO `S1 T. U T1D U\ Wޓ U1r W QX" W1 QX Zw `X܏ Z A[ Z1 A[; \U P[1b \{ ] \1 ] _̐ ]1֐ _ A` _1  A`. aM P`_ a~ 1c b1 1c qdK @c1ב qd e d1  e) fړ e1C f^ 1h g1w 1h is @h iݒ !k i1  !k, alJ 0k1[ alx m pl1 m nٓ m1 n !p n1* !pO qr 0p q s qȔ s Ku s  Ku0 vN PuT vv ry wr ry̕ { ys {( s~M |se s~~  ~  ۖ    ' 7 T Jo } J lq P lߗ  s p !  A d p   ̎ә <ј ̎ ԑ Ў) ԑM o   lҙ l l  ' pL7 W  Lu  l \К l  86 O26  76 66 `56 ,@46 + 36 :06 K/6 J.6 ^-6 n`,6 @+6  *6 m)6 ~&6 '6  ě   & K t  ̜  " H r  Fʝ V F  |* P,= |d  : Ȟ ت  ت5 *c J * ڟ 0`[P ) N w  Ԡ " "> dr d ơ  r r? h  cڢ c qH qt  ʣ  - d     H x  EΥ E $ U   XZ6   W% = Y v   ӧ    4 ] ~y  W 5(Ψ 5(ۨ5(`Z6 ` i1 L k   Ω    - `O zo ` z <Ъ  <  ' @8 W t   ī  @   @ 4 \   լ i p : X z  ĭ    + N pr pZ6hZ6 Ϯ M   4 T o   ¯ ޯ   , H eb e y y ԰   1 R w  DZ   .H .u > >˲ M P .0 P t  ³   / T Pm   h! h!˴ $ $ % %+ 8%B 8%[ s%r s% % % %Ե % 3& 3& s&4 s&M &d &~ & & 3'ȶ 3' s' s' ', 'F '^ 'x 3( 3( s(ķ s(߷ ( ( (, (D )Z )r %) %) B) B)θ b) b) ) ), )B )Z )p ) ) ) *ι * "* "* B*. B*G b*^ b*w * * * *غ * *  *" *< +T +m + + B+ B+ͻ {+ {+ + +. +F +_ ,v , ;, ;, k,ּ k, , ," ,: ,T ,l , +- +- [-н [- - - -6 -Q -j - . . P8̾     B _    .׿ 0. 0. T.. T.L t.h t. . . . . _/$ _/E s/d s/ / / 0 0 0 05 1N 1o c1 c1 1 1 1 1 526 52Q 2j 2 2 2 4 4 -4. -4X 5 5 5 5 6 63 6R 6q Z7 Z7 ,8 ,8 P8" P86 JN f       S  P8k  Y8 Y8 i8~  i8  y8  y8(  8 8 8: 8S 8/ 8H 8] 8w 8P 8i 9  9 +9 +9 T9  T9  96 9P 9 9 9{ 9 9 9 9& 9& 9^) 9w) 9$ 9$ :\% :v% :( :"( ):Q! ):k! 9: 9: I: I: Y: Y: i:" i:" y:r y: :v : :& :? :2 :O :j : : : : : : :  ;  ;  ;t ; );  );  9;I  9;a  I; I; Y;t Y; i;i i; }; }; ; ; 6<f 6<~ w<! w<: <  <  =s = = = )= )= 9= 9=7 I=& I=' Y=) Y=) i=@$ i=X$ y=% y=% =E( =^( =! =! = = = = = =) =|" =" = = = = >` >x > > =>4 =>L I>b I>{ Y> Y> i>5  i>M  y>  y>  > > >  >  >  >  >0 >I > > > > > >  u  -  kc p, * G 0 pd^ 0 6: v[  T P $ 'q6 yW 0E ^  Tt p W <  2 `0 pQ 8  p ` ~i 7% ' `i  4/ <> R 8d 4 W[y 3 0 %    "  @FO 4  Pro  + `  ?  7 O v ` k  0# 23 R 6 a n  { 0   `nO  ) K 0+  P  j  P6   5 @  }  P0& B  u> W+ 7 yL @^ @6m ~ `v `b 0 M p1 -  `M `    . O 1X P `* Q8 {w X nC T ` Kw ( ?  H c 0 `Q ( J p  k p | c pX p.     Q, ` > S f p { P2  ^ 0  `s A OA p#C pV f   0     b    n  3 p:B p4 [ bf c @ww(:6  `h Y Y p  ; + W P  /     , `" / : F \$ pgW @,S c3jh5 E d PX 7W ` :6 0i  `6k P+  ~  f, pi! @  i P/  h  . `  PN> P N  M 9` } 5 v % #5 p ` 4   P{ 9 0~  "X T @ dS r* `k d! S 3 E m VX @6 j p  i  dD  pn [ T c^0 p / 3  @e  S  ;  `v  pW  P ЬF V `G( g5 8 G a ^ um `7 h p)  x 6  @8 O v \ p x& 1 0* @ R  o   6 0O nU   h XX  J tV b   V) g d    )  0  ^ `  Q . Q 5 } 2  j pvx MX I  pQ % s <  Y  Pg ЋR [b `<z  @Fs @t  X 0 9u   d C P=  % `  `,q P`  K  " f. P   T? 9 p~ ^ B L P' [ @m a H~  {o   X *! `{ 04 `  q 6  h m  [.    z- `b9 K p}:  _ ! T P \ ro  # 0+X  p ( 0  FP @T лn P T 4 \ ) :  ? `vP ]  n PQ Px "l w    TD T ^  @c A ( j   `  G  5 }   u  >   )  6Z6B 0s Vr `   {S 6  ' Td k 0M PDv s @   a   9 r C ` W   " 0z  @ E:6  # /&( - 6 `C L ^ [ `D  /  _f g H  @ P z O |  Z   PS V M  M   u  0   .0:6" `  Py(  06  @% k7 Z ' { Oh y  С P_   lb  `g p  u 0@  u  @a p*   e 4 `'963 `; PEy ; ` HA `=(T (G  \a @5s `z r 6k  G `  PN P 0e   @ \ e5 E  p { e  ` F)  z > І Z Q 1g W5 P .     8  p p   P6 + t F W 0;v pHb 0  е m @a QN @1  p T~ ? ~% S  P 9  00 U ^   g  o ` _   p P t n Q, Q7 CJ ! Z \o ~ 0R 1& 1    ,  `e   7L  d e `V 9/ ux  @ B9Z6I  ` c 0[ `{ h \ s u 2&  T   g  T Ph u > k 0 ky@ Q  @& c %& `u 0 Pk S w1 p `     P U p u% &   n pH `8 # 0`= 0'a  ^T e hq \, | / p; 0, L Pof  = ,Xr pp @ "6 u  T X  Q  p   C  3 h W$ p+ 8 @a @w G R *b ,6u @OH  d  0 > a  Q 0t   H  @!  " T `x `*  F     P_: p|wF @IZ @-Gi \w 0)   p2  a  @ 7 Ъ  0f `z  & p  @7  k / ; @x t(W @vg 7{ '  D  N n g x9 b P Pk+ 7    &  p  <[ ' v \1  B )6 PX j M d^U e @& 8 q 0    @  6p ) `f X D  O( D    G F  t \ <' C(@  t  PU 0Q 6 i A  0E #  -& j > p7  y 6  G  E  %  J  @8 )  K \ p, f  0zq c `  ^  -F ~   ?    ~  c  @Z  T m? 2Z  @b= ЮY A * cW   A 5 W V  Pi t V *  @e 5 S 0([ p 3 v:6 P @# a l W z  '6   `z p- O F   w V \ P`Yt  T~ % 8  b ] Pg[ @ з   `P f   9  >  b v  ( D I([ ;T  i Hh au PA\  7 7W9  ' \ f  P  c p+ T  4 & 0$   8 4sI g   _ 6  z  * w i `+ K @n @H a 0X }  L  .: )^ pC:6A @   0u | p< ,    ) 8 ` lOJ ' \ 0[ F  ws @  `   j^   ] Y b 0  ,  0 E n  ! Fc `z K  \ P 7 \# M < j @ T `O { p 9  b o  e2 ; %' P.  A `H5k P  P  % @19 [J Q F H ^ ^ c    8` 9`N`RR P p   JJcؚ555H5h5596Zvq ;  p,+# A  09$  6 (3 0=  * 62EViQ 9 " = u H P> ! 0:   `93 .'8# D E ?8, pB\ Y &3cv 0A  -+$ @ u( =   %3 u .B -+M& @ `s p!} @2N1 G  P8  / PA  >    AJ ) 9  > , P++6T` -+l|` > Z6c D h 9 %_ 8 :+ @ M_ P*i 0.$ 9 x   . +" `F*  <5  % G+ HN @= 0?Y )bt @'3C <R 0)) `=  8' |  `:  G ?1 `; +9Qe &{ P)  > < & 9  pI* ( !  ;  DJ3 E?Pd '3% = o 0 w  @;  ;V[  : -@  P:  `GAZv @&3 : R6$ :  H" .4O  > L"h = y+  ;  / > A  6-HZi/ &3 :   p8  %3 2j! @  1 . ( -+4ATf `-+&q ) E;  :N 8'   `//7" p: CV} e ) n 5 ' * p*c  @2 @  &3  '3'7J[n : { 9  '3 `.c  p>  p@  (3/m, @E:( : < 4 Nbj 8  = o 0*&, 0H% :  ++ * `> ! =  B ) @   @%3+ E$ )- 0Q9K^u96n$ p=  = ( @   >  PB?  8 *= PG[u 2 +  0;  ,+ 08 B =  )% 9  @:  p 5P 1U';Mav @ (: %(DWi} @(3Y B 1 `8 V : + CS' @  P@ s @A   > Z6 8 ' P;   ' : N c v   >      @,+ >L  1S $  ,+/  x A  > < R  ++ @<7]  *g   p)  ,+    A   96    * ;V 6 A &  0D  G? = Q  @> Z 'm  0-+x    p1NEP     )   Q <A $  C0  (3<  : G  043 = wb q  ++{   A   `A  0B  A  p;   `7 @?Li `@ ' P=  N.annobin_umathmodule.c.annobin_umathmodule.c_end.annobin_umathmodule.c.hot.annobin_umathmodule.c_end.hot.annobin_umathmodule.c.unlikely.annobin_umathmodule.c_end.unlikely.annobin_umathmodule.c.startup.annobin_umathmodule.c_end.startup.annobin_umathmodule.c.exit.annobin_umathmodule.c_end.exit.annobin_npy_fabsl.start.annobin_npy_fabsl.endnpy_fabsl.annobin_npy_fabs.start.annobin_npy_fabs.endnpy_fabs.annobin_npy_fabsf.start.annobin_npy_fabsf.endnpy_fabsf.annobin_npy_heavisidef.start.annobin_npy_heavisidef.endnpy_heavisidef.annobin_npy_rad2degf.start.annobin_npy_rad2degf.endnpy_rad2degf.annobin_npy_deg2radf.start.annobin_npy_deg2radf.endnpy_deg2radf.annobin_npy_heaviside.start.annobin_npy_heaviside.endnpy_heaviside.annobin_npy_rad2deg.start.annobin_npy_rad2deg.endnpy_rad2deg.annobin_npy_deg2rad.start.annobin_npy_deg2rad.endnpy_deg2rad.annobin_npy_heavisidel.start.annobin_npy_heavisidel.endnpy_heavisidel.annobin_npy_rad2degl.start.annobin_npy_rad2degl.endnpy_rad2degl.annobin_npy_deg2radl.start.annobin_npy_deg2radl.endnpy_deg2radl.annobin_nc_negf.start.annobin_nc_negf.endnc_negf.annobin_nc_posf.start.annobin_nc_posf.endnc_posf.annobin_nc_neg.start.annobin_nc_neg.endnc_neg.annobin_nc_pos.start.annobin_nc_pos.endnc_pos.annobin_nc_negl.start.annobin_nc_negl.endnc_negl.annobin_nc_posl.start.annobin_nc_posl.endnc_posl.annobin_object_ufunc_type_resolver.start.annobin_object_ufunc_type_resolver.endobject_ufunc_type_resolver.annobin_object_ufunc_loop_selector.start.annobin_object_ufunc_loop_selector.endobject_ufunc_loop_selector.annobin_ufunc_frompyfunc.start.annobin_ufunc_frompyfunc.endufunc_frompyfuncpyfunc_functions.annobin_Py_square.start.annobin_Py_square.endPy_square.annobin_npy_truncl.start.annobin_npy_truncl.endnpy_truncl.annobin_npy_trunc.start.annobin_npy_trunc.endnpy_trunc.annobin_npy_truncf.start.annobin_npy_truncf.endnpy_truncf.annobin_nc_tanhl.start.annobin_nc_tanhl.endnc_tanhl.annobin_nc_tanh.start.annobin_nc_tanh.endnc_tanh.annobin_nc_tanhf.start.annobin_nc_tanhf.endnc_tanhf.annobin_npy_tanhl.start.annobin_npy_tanhl.endnpy_tanhl.annobin_npy_tanh.start.annobin_npy_tanh.endnpy_tanh.annobin_npy_tanhf.start.annobin_npy_tanhf.endnpy_tanhf.annobin_nc_tanl.start.annobin_nc_tanl.endnc_tanl.annobin_nc_tan.start.annobin_nc_tan.endnc_tan.annobin_nc_tanf.start.annobin_nc_tanf.endnc_tanf.annobin_npy_tanl.start.annobin_npy_tanl.endnpy_tanl.annobin_npy_tan.start.annobin_npy_tan.endnpy_tan.annobin_npy_tanf.start.annobin_npy_tanf.endnpy_tanf.annobin_nc_sqrtl.start.annobin_nc_sqrtl.endnc_sqrtl.annobin_nc_sqrt.start.annobin_nc_sqrt.endnc_sqrt.annobin_nc_sqrtf.start.annobin_nc_sqrtf.endnc_sqrtf.annobin_npy_sqrtl.start.annobin_npy_sqrtl.endnpy_sqrtl.annobin_npy_sqrt.start.annobin_npy_sqrt.endnpy_sqrt.annobin_npy_sqrtf.start.annobin_npy_sqrtf.endnpy_sqrtf.annobin_nc_sinhl.start.annobin_nc_sinhl.endnc_sinhl.annobin_nc_sinh.start.annobin_nc_sinh.endnc_sinh.annobin_nc_sinhf.start.annobin_nc_sinhf.endnc_sinhf.annobin_npy_sinhl.start.annobin_npy_sinhl.endnpy_sinhl.annobin_npy_sinh.start.annobin_npy_sinh.endnpy_sinh.annobin_npy_sinhf.start.annobin_npy_sinhf.endnpy_sinhf.annobin_nc_sinl.start.annobin_nc_sinl.endnc_sinl.annobin_nc_sin.start.annobin_nc_sin.endnc_sin.annobin_nc_sinf.start.annobin_nc_sinf.endnc_sinf.annobin_npy_sinl.start.annobin_npy_sinl.endnpy_sinl.annobin_npy_sin.start.annobin_npy_sin.endnpy_sin.annobin_npy_sinf.start.annobin_npy_sinf.endnpy_sinf.annobin_npy_rintl.start.annobin_npy_rintl.endnpy_rintl.annobin_nc_rintl.start.annobin_nc_rintl.endnc_rintl.annobin_npy_rint.start.annobin_npy_rint.endnpy_rint.annobin_nc_rint.start.annobin_nc_rint.endnc_rint.annobin_npy_rintf.start.annobin_npy_rintf.endnpy_rintf.annobin_nc_rintf.start.annobin_nc_rintf.endnc_rintf.annobin_Py_reciprocal.start.annobin_Py_reciprocal.endPy_reciprocal.annobin_Py_get_one.start.annobin_Py_get_one.endPy_get_one.annobin_npy_ObjectPower.start.annobin_npy_ObjectPower.endnpy_ObjectPower.annobin_nc_powf.start.annobin_nc_powf.endnc_powf.annobin_npy_powf.start.annobin_npy_powf.endnpy_powf.annobin_npy_ObjectLogicalAnd.start.annobin_npy_ObjectLogicalAnd.endnpy_ObjectLogicalAnd.annobin_npy_log2l.start.annobin_npy_log2l.endnpy_log2l.annobin_npy_log2.start.annobin_npy_log2.endnpy_log2.annobin_npy_log2f.start.annobin_npy_log2f.endnpy_log2f.annobin_npy_log1pl.start.annobin_npy_log1pl.endnpy_log1pl.annobin_npy_log1p.start.annobin_npy_log1p.endnpy_log1p.annobin_npy_log1pf.start.annobin_npy_log1pf.endnpy_log1pf.annobin_npy_log10l.start.annobin_npy_log10l.endnpy_log10l.annobin_npy_log10.start.annobin_npy_log10.endnpy_log10.annobin_npy_log10f.start.annobin_npy_log10f.endnpy_log10f.annobin_nc_logl.start.annobin_nc_logl.endnc_logl.annobin_nc_log2l.start.annobin_nc_log2l.endnc_log2l.annobin_nc_log10l.start.annobin_nc_log10l.endnc_log10l.annobin_nc_log.start.annobin_nc_log.endnc_log.annobin_nc_log2.start.annobin_nc_log2.endnc_log2.annobin_nc_log10.start.annobin_nc_log10.endnc_log10.annobin_nc_logf.start.annobin_nc_logf.endnc_logf.annobin_nc_log2f.start.annobin_nc_log2f.endnc_log2f.annobin_nc_log10f.start.annobin_nc_log10f.endnc_log10f.annobin_npy_logl.start.annobin_npy_logl.endnpy_logl.annobin_npy_log.start.annobin_npy_log.endnpy_log.annobin_npy_logf.start.annobin_npy_logf.endnpy_logf.annobin_npy_hypotl.start.annobin_npy_hypotl.endnpy_hypotl.annobin_npy_hypot.start.annobin_npy_hypot.endnpy_hypot.annobin_npy_hypotf.start.annobin_npy_hypotf.endnpy_hypotf.annobin_npy_fmodl.start.annobin_npy_fmodl.endnpy_fmodl.annobin_npy_fmod.start.annobin_npy_fmod.endnpy_fmod.annobin_npy_fmodf.start.annobin_npy_fmodf.endnpy_fmodf.annobin_npy_ObjectMin.start.annobin_npy_ObjectMin.endnpy_ObjectMin.annobin_npy_ObjectMax.start.annobin_npy_ObjectMax.endnpy_ObjectMax.annobin_npy_floorl.start.annobin_npy_floorl.endnpy_floorl.annobin_npy_floor.start.annobin_npy_floor.endnpy_floor.annobin_npy_floorf.start.annobin_npy_floorf.endnpy_floorf.annobin_nc_powl.start.annobin_nc_powl.endnc_powl.annobin_nc_pow.start.annobin_nc_pow.endnc_pow.annobin_npy_powl.start.annobin_npy_powl.endnpy_powl.annobin_npy_pow.start.annobin_npy_pow.endnpy_pow.annobin_npy_expm1l.start.annobin_npy_expm1l.endnpy_expm1l.annobin_npy_expm1.start.annobin_npy_expm1.endnpy_expm1.annobin_npy_expm1f.start.annobin_npy_expm1f.endnpy_expm1f.annobin_npy_exp2l.start.annobin_npy_exp2l.endnpy_exp2l.annobin_npy_exp2.start.annobin_npy_exp2.endnpy_exp2.annobin_npy_exp2f.start.annobin_npy_exp2f.endnpy_exp2f.annobin_nc_expl.start.annobin_nc_expl.endnc_expl.annobin_nc_exp2l.start.annobin_nc_exp2l.endnc_exp2l.annobin_nc_exp.start.annobin_nc_exp.endnc_exp.annobin_nc_exp2.start.annobin_nc_exp2.endnc_exp2.annobin_nc_expf.start.annobin_nc_expf.endnc_expf.annobin_nc_exp2f.start.annobin_nc_exp2f.endnc_exp2f.annobin_npy_expl.start.annobin_npy_expl.endnpy_expl.annobin_npy_exp.start.annobin_npy_exp.endnpy_exp.annobin_npy_expf.start.annobin_npy_expf.endnpy_expf.annobin_nc_coshl.start.annobin_nc_coshl.endnc_coshl.annobin_nc_cosh.start.annobin_nc_cosh.endnc_cosh.annobin_nc_coshf.start.annobin_nc_coshf.endnc_coshf.annobin_npy_coshl.start.annobin_npy_coshl.endnpy_coshl.annobin_npy_cosh.start.annobin_npy_cosh.endnpy_cosh.annobin_npy_coshf.start.annobin_npy_coshf.endnpy_coshf.annobin_nc_cosl.start.annobin_nc_cosl.endnc_cosl.annobin_nc_cos.start.annobin_nc_cos.endnc_cos.annobin_nc_cosf.start.annobin_nc_cosf.endnc_cosf.annobin_npy_cosl.start.annobin_npy_cosl.endnpy_cosl.annobin_nc_expm1l.start.annobin_nc_expm1l.endnc_expm1l.annobin_npy_cos.start.annobin_npy_cos.endnpy_cos.annobin_nc_expm1.start.annobin_nc_expm1.endnc_expm1.annobin_npy_cosf.start.annobin_npy_cosf.endnpy_cosf.annobin_nc_expm1f.start.annobin_nc_expm1f.endnc_expm1f.annobin_npy_ceill.start.annobin_npy_ceill.endnpy_ceill.annobin_npy_ceil.start.annobin_npy_ceil.endnpy_ceil.annobin_npy_ceilf.start.annobin_npy_ceilf.endnpy_ceilf.annobin_npy_cbrtl.start.annobin_npy_cbrtl.endnpy_cbrtl.annobin_npy_cbrt.start.annobin_npy_cbrt.endnpy_cbrt.annobin_npy_cbrtf.start.annobin_npy_cbrtf.endnpy_cbrtf.annobin_nc_atanhl.start.annobin_nc_atanhl.endnc_atanhl.annobin_nc_atanh.start.annobin_nc_atanh.endnc_atanh.annobin_nc_atanhf.start.annobin_nc_atanhf.endnc_atanhf.annobin_npy_atanhl.start.annobin_npy_atanhl.endnpy_atanhl.annobin_npy_atanh.start.annobin_npy_atanh.endnpy_atanh.annobin_npy_atanhf.start.annobin_npy_atanhf.endnpy_atanhf.annobin_npy_atan2l.start.annobin_npy_atan2l.endnpy_atan2l.annobin_nc_log1pl.start.annobin_nc_log1pl.endnc_log1pl.annobin_npy_atan2.start.annobin_npy_atan2.endnpy_atan2.annobin_nc_log1p.start.annobin_nc_log1p.endnc_log1p.annobin_npy_atan2f.start.annobin_npy_atan2f.endnpy_atan2f.annobin_nc_log1pf.start.annobin_nc_log1pf.endnc_log1pf.annobin_nc_atanl.start.annobin_nc_atanl.endnc_atanl.annobin_nc_atan.start.annobin_nc_atan.endnc_atan.annobin_nc_atanf.start.annobin_nc_atanf.endnc_atanf.annobin_npy_atanl.start.annobin_npy_atanl.endnpy_atanl.annobin_npy_atan.start.annobin_npy_atan.endnpy_atan.annobin_npy_atanf.start.annobin_npy_atanf.endnpy_atanf.annobin_nc_asinhl.start.annobin_nc_asinhl.endnc_asinhl.annobin_nc_asinh.start.annobin_nc_asinh.endnc_asinh.annobin_nc_asinhf.start.annobin_nc_asinhf.endnc_asinhf.annobin_npy_asinhl.start.annobin_npy_asinhl.endnpy_asinhl.annobin_npy_asinh.start.annobin_npy_asinh.endnpy_asinh.annobin_npy_asinhf.start.annobin_npy_asinhf.endnpy_asinhf.annobin_nc_asinl.start.annobin_nc_asinl.endnc_asinl.annobin_nc_asin.start.annobin_nc_asin.endnc_asin.annobin_nc_asinf.start.annobin_nc_asinf.endnc_asinf.annobin_npy_asinl.start.annobin_npy_asinl.endnpy_asinl.annobin_npy_asin.start.annobin_npy_asin.endnpy_asin.annobin_npy_asinf.start.annobin_npy_asinf.endnpy_asinf.annobin_nc_acoshl.start.annobin_nc_acoshl.endnc_acoshl.annobin_nc_acosh.start.annobin_nc_acosh.endnc_acosh.annobin_nc_acoshf.start.annobin_nc_acoshf.endnc_acoshf.annobin_npy_acoshl.start.annobin_npy_acoshl.endnpy_acoshl.annobin_npy_acosh.start.annobin_npy_acosh.endnpy_acosh.annobin_npy_acoshf.start.annobin_npy_acoshf.endnpy_acoshf.annobin_nc_acosl.start.annobin_nc_acosl.endnc_acosl.annobin_nc_acos.start.annobin_nc_acos.endnc_acos.annobin_nc_acosf.start.annobin_nc_acosf.endnc_acosf.annobin_npy_acosl.start.annobin_npy_acosl.endnpy_acosl.annobin_npy_acos.start.annobin_npy_acos.endnpy_acos.annobin_npy_acosf.start.annobin_npy_acosf.endnpy_acosf.annobin_add_newdoc_ufunc.start.annobin_add_newdoc_ufunc.endadd_newdoc_ufunc.annobin_npy_ObjectLogicalOr.start.annobin_npy_ObjectLogicalOr.endnpy_ObjectLogicalOr.annobin_npy_ObjectLogicalNot.start.annobin_npy_ObjectLogicalNot.endnpy_ObjectLogicalNot.annobin_npy_logaddexp2l.start.annobin_npy_logaddexp2l.endnpy_logaddexp2l.annobin_npy_logaddexp2.start.annobin_npy_logaddexp2.endnpy_logaddexp2.annobin_npy_logaddexp2f.start.annobin_npy_logaddexp2f.endnpy_logaddexp2f.annobin_npy_logaddexpl.start.annobin_npy_logaddexpl.endnpy_logaddexpl.annobin_npy_logaddexp.start.annobin_npy_logaddexp.endnpy_logaddexp.annobin_npy_logaddexpf.start.annobin_npy_logaddexpf.endnpy_logaddexpf.annobin_PyInit_umath.start.annobin_PyInit_umath.endmoduledef_ones_like_functionsabsolute_functions_ones_like_dataabsolute_dataadd_functionsarccosh_dataadd_dataarccos_dataarccos_functionsarccosh_functionsarcsin_dataarcsinh_dataarctan_dataarcsin_functionsarcsinh_functionsarctan_functionsarctan2_functionsarctan2_dataarctanh_dataarctanh_functionsbitwise_and_functionsbitwise_and_databitwise_or_functionsbitwise_or_databitwise_xor_functionscbrt_functionsbitwise_xor_datacbrt_dataceil_dataceil_functionsconjugate_functionsdeg2rad_functionsdeg2rad_datadegrees_datadegrees_functionsdivmod_functionsdivmod_dataexpm1_dataexpm1_functionsfabs_datafloat_power_datafloat_power_functionsfloor_datafabs_functionsfloor_functionsfloor_divide_datafmax_datafmod_datafmin_datafmod_functionsfloor_divide_functionsfmax_functionsfmin_functionsgreater_functionsgreater_equal_functionsheaviside_functionsheaviside_datahypot_functionshypot_datainvert_functionsinvert_dataleft_shift_functionsleft_shift_dataless_functionsless_equal_functionslog_functionslog_datalog10_datalog1p_datalog10_functionslog1p_functionslog2_datalogaddexp_datalogaddexp_functionslog2_functionslogaddexp2_datalogaddexp2_functionslogical_and_functionslogical_and_datalogical_not_functionslogical_not_datalogical_or_functionslogical_or_datalogical_xor_functionsmaximum_datamaximum_functionsminimum_functionsminimum_datamultiply_functionsmultiply_datanegative_functionsnegative_datanot_equal_functionspositive_functionspositive_datarad2deg_datarad2deg_functionsradians_dataradians_functionsreciprocal_functionsremainder_functionsreciprocal_dataremainder_dataright_shift_functionsrint_dataright_shift_datarint_functionssqrt_datasqrt_functionssquare_functionssquare_datasubtract_functionssubtract_datatrue_divide_datatrunc_datatrunc_functions_arg_functions_arg_data_arg_signaturestrue_divide_functions_ones_like_signaturesabsolute_signaturesadd_signaturesarccos_signaturesarccosh_signaturesarcsin_signaturesarcsinh_signaturesarctan_signaturesarctan2_signaturesarctanh_signaturesbitwise_and_signaturesbitwise_or_signaturesbitwise_xor_signaturescbrt_signaturesceil_signaturesconjugate_signaturesconjugate_datacopysign_signaturescopysign_datacopysign_functionsdeg2rad_signaturesdegrees_signaturesdivmod_signaturesexpm1_signaturesfabs_signaturesfloat_power_signaturesfloor_signaturesfloor_divide_signaturesfmax_signaturesfmin_signaturesfmod_signaturesfrexp_signaturesfrexp_datafrexp_functionsgreater_signaturesgreater_datagreater_equal_signaturesgreater_equal_dataheaviside_signatureshypot_signaturesinvert_signaturesisfinite_signaturesisfinite_dataisfinite_functionsisinf_signaturesisinf_dataisinf_functionsisnan_signaturesisnan_dataisnan_functionsisnat_signaturesisnat_dataisnat_functionsldexp_signaturesldexp_dataldexp_functionsleft_shift_signaturesless_signaturesless_dataless_equal_signaturesless_equal_datalog_signatureslog10_signatureslog1p_signatureslog2_signatureslogaddexp_signatureslogaddexp2_signatureslogical_and_signatureslogical_not_signatureslogical_or_signatureslogical_xor_signatureslogical_xor_datamaximum_signaturesminimum_signaturesmodf_signaturesmodf_datamodf_functionsmultiply_signaturesnegative_signaturesnextafter_signaturesnextafter_datanextafter_functionsnot_equal_signaturesnot_equal_datapositive_signaturesrad2deg_signaturesradians_signaturesreciprocal_signaturesremainder_signaturesright_shift_signaturesrint_signaturessignbit_signaturessignbit_datasignbit_functionsspacing_signaturesspacing_dataspacing_functionssqrt_signaturessquare_signaturessubtract_signaturestrue_divide_signaturestrunc_signatures.annobin_reduction.c.annobin_reduction.c_end.annobin_reduction.c.hot.annobin_reduction.c_end.hot.annobin_reduction.c.unlikely.annobin_reduction.c_end.unlikely.annobin_reduction.c.startup.annobin_reduction.c_end.startup.annobin_reduction.c.exit.annobin_reduction.c_end.exit.annobin_allocate_reduce_result.start.annobin_allocate_reduce_result.endallocate_reduce_result.annobin_conform_reduce_result.start.annobin_conform_reduce_result.endconform_reduce_result.annobin_PyArray_CreateReduceResult.start.annobin_PyArray_CreateReduceResult.end.annobin_PyArray_InitializeReduceResult.start.annobin_PyArray_InitializeReduceResult.end.annobin_PyUFunc_ReduceWrapper.start.annobin_PyUFunc_ReduceWrapper.end.annobin_loops.c.annobin_loops.c_end.annobin_loops.c.hot.annobin_loops.c_end.hot.annobin_loops.c.unlikely.annobin_loops.c_end.unlikely.annobin_loops.c.startup.annobin_loops.c_end.startup.annobin_loops.c.exit.annobin_loops.c_end.exit.annobin_sse2_binary_multiply_FLOAT.start.annobin_sse2_binary_multiply_FLOAT.endsse2_binary_multiply_FLOAT.annobin_sse2_binary_scalar1_multiply_FLOAT.start.annobin_sse2_binary_scalar1_multiply_FLOAT.endsse2_binary_scalar1_multiply_FLOAT.annobin_sse2_binary_scalar2_multiply_FLOAT.start.annobin_sse2_binary_scalar2_multiply_FLOAT.endsse2_binary_scalar2_multiply_FLOAT.annobin_sse2_binary_divide_FLOAT.start.annobin_sse2_binary_divide_FLOAT.endsse2_binary_divide_FLOAT.annobin_sse2_binary_scalar1_divide_FLOAT.start.annobin_sse2_binary_scalar1_divide_FLOAT.endsse2_binary_scalar1_divide_FLOAT.annobin_sse2_binary_scalar2_divide_FLOAT.start.annobin_sse2_binary_scalar2_divide_FLOAT.endsse2_binary_scalar2_divide_FLOAT.annobin_sse2_binary_multiply_DOUBLE.start.annobin_sse2_binary_multiply_DOUBLE.endsse2_binary_multiply_DOUBLE.annobin_sse2_binary_scalar1_multiply_DOUBLE.start.annobin_sse2_binary_scalar1_multiply_DOUBLE.endsse2_binary_scalar1_multiply_DOUBLE.annobin_sse2_binary_scalar2_multiply_DOUBLE.start.annobin_sse2_binary_scalar2_multiply_DOUBLE.endsse2_binary_scalar2_multiply_DOUBLE.annobin_sse2_binary_divide_DOUBLE.start.annobin_sse2_binary_divide_DOUBLE.endsse2_binary_divide_DOUBLE.annobin_sse2_binary_scalar1_divide_DOUBLE.start.annobin_sse2_binary_scalar1_divide_DOUBLE.endsse2_binary_scalar1_divide_DOUBLE.annobin_sse2_binary_scalar2_divide_DOUBLE.start.annobin_sse2_binary_scalar2_divide_DOUBLE.endsse2_binary_scalar2_divide_DOUBLE.annobin_pairwise_sum_FLOAT.start.annobin_pairwise_sum_FLOAT.endpairwise_sum_FLOAT.annobin_pairwise_sum_DOUBLE.start.annobin_pairwise_sum_DOUBLE.endpairwise_sum_DOUBLE.annobin_pairwise_sum_LONGDOUBLE.start.annobin_pairwise_sum_LONGDOUBLE.endpairwise_sum_LONGDOUBLE.annobin_pairwise_sum_HALF.start.annobin_pairwise_sum_HALF.endpairwise_sum_HALF.annobin_pairwise_sum_CFLOAT.start.annobin_pairwise_sum_CFLOAT.endpairwise_sum_CFLOAT.annobin_pairwise_sum_CDOUBLE.start.annobin_pairwise_sum_CDOUBLE.endpairwise_sum_CDOUBLE.annobin_pairwise_sum_CLONGDOUBLE.start.annobin_pairwise_sum_CLONGDOUBLE.endpairwise_sum_CLONGDOUBLE.annobin_PyUFunc_e_e.start.annobin_PyUFunc_e_e.end.annobin_PyUFunc_e_e_As_f_f.start.annobin_PyUFunc_e_e_As_f_f.end.annobin_PyUFunc_e_e_As_d_d.start.annobin_PyUFunc_e_e_As_d_d.end.annobin_PyUFunc_f_f.start.annobin_PyUFunc_f_f.end.annobin_PyUFunc_f_f_As_d_d.start.annobin_PyUFunc_f_f_As_d_d.end.annobin_PyUFunc_ee_e.start.annobin_PyUFunc_ee_e.end.annobin_PyUFunc_ee_e_As_ff_f.start.annobin_PyUFunc_ee_e_As_ff_f.end.annobin_PyUFunc_ee_e_As_dd_d.start.annobin_PyUFunc_ee_e_As_dd_d.end.annobin_PyUFunc_ff_f.start.annobin_PyUFunc_ff_f.end.annobin_PyUFunc_ff_f_As_dd_d.start.annobin_PyUFunc_ff_f_As_dd_d.end.annobin_PyUFunc_d_d.start.annobin_PyUFunc_d_d.end.annobin_PyUFunc_dd_d.start.annobin_PyUFunc_dd_d.end.annobin_PyUFunc_g_g.start.annobin_PyUFunc_g_g.end.annobin_PyUFunc_gg_g.start.annobin_PyUFunc_gg_g.end.annobin_PyUFunc_F_F.start.annobin_PyUFunc_F_F.end.annobin_PyUFunc_F_F_As_D_D.start.annobin_PyUFunc_F_F_As_D_D.end.annobin_PyUFunc_FF_F.start.annobin_PyUFunc_FF_F.end.annobin_PyUFunc_FF_F_As_DD_D.start.annobin_PyUFunc_FF_F_As_DD_D.end.annobin_PyUFunc_D_D.start.annobin_PyUFunc_D_D.end.annobin_PyUFunc_DD_D.start.annobin_PyUFunc_DD_D.end.annobin_PyUFunc_G_G.start.annobin_PyUFunc_G_G.end.annobin_PyUFunc_GG_G.start.annobin_PyUFunc_GG_G.end.annobin_PyUFunc_O_O.start.annobin_PyUFunc_O_O.end.annobin_PyUFunc_O_O_method.start.annobin_PyUFunc_O_O_method.end.annobin_PyUFunc_OO_O.start.annobin_PyUFunc_OO_O.end.annobin_PyUFunc_OO_O_method.start.annobin_PyUFunc_OO_O_method.end.annobin_PyUFunc_On_Om.start.annobin_PyUFunc_On_Om.end.annobin_BOOL_equal.start.annobin_BOOL_equal.end.annobin_BOOL_not_equal.start.annobin_BOOL_not_equal.end.annobin_BOOL_greater.start.annobin_BOOL_greater.end.annobin_BOOL_greater_equal.start.annobin_BOOL_greater_equal.end.annobin_BOOL_less.start.annobin_BOOL_less.end.annobin_BOOL_less_equal.start.annobin_BOOL_less_equal.end.annobin_BOOL_logical_and.start.annobin_BOOL_logical_and.end.annobin_BOOL_logical_or.start.annobin_BOOL_logical_or.end.annobin_BOOL_absolute.start.annobin_BOOL_absolute.end.annobin_BOOL_logical_not.start.annobin_BOOL_logical_not.end.annobin_BOOL__ones_like.start.annobin_BOOL__ones_like.end.annobin_BYTE__ones_like.start.annobin_BYTE__ones_like.end.annobin_BYTE_positive.start.annobin_BYTE_positive.end.annobin_BYTE_square.start.annobin_BYTE_square.end.annobin_BYTE_reciprocal.start.annobin_BYTE_reciprocal.end.annobin_BYTE_conjugate.start.annobin_BYTE_conjugate.end.annobin_BYTE_negative.start.annobin_BYTE_negative.end.annobin_BYTE_logical_not.start.annobin_BYTE_logical_not.end.annobin_BYTE_invert.start.annobin_BYTE_invert.end.annobin_BYTE_add.start.annobin_BYTE_add.end.annobin_BYTE_subtract.start.annobin_BYTE_subtract.end.annobin_BYTE_multiply.start.annobin_BYTE_multiply.end.annobin_BYTE_bitwise_and.start.annobin_BYTE_bitwise_and.end.annobin_BYTE_bitwise_or.start.annobin_BYTE_bitwise_or.end.annobin_BYTE_bitwise_xor.start.annobin_BYTE_bitwise_xor.end.annobin_BYTE_left_shift.start.annobin_BYTE_left_shift.end.annobin_BYTE_right_shift.start.annobin_BYTE_right_shift.end.annobin_BYTE_equal.start.annobin_BYTE_equal.end.annobin_BYTE_not_equal.start.annobin_BYTE_not_equal.end.annobin_BYTE_greater.start.annobin_BYTE_greater.end.annobin_BYTE_greater_equal.start.annobin_BYTE_greater_equal.end.annobin_BYTE_less.start.annobin_BYTE_less.end.annobin_BYTE_less_equal.start.annobin_BYTE_less_equal.end.annobin_BYTE_logical_and.start.annobin_BYTE_logical_and.end.annobin_BYTE_logical_or.start.annobin_BYTE_logical_or.end.annobin_BYTE_logical_xor.start.annobin_BYTE_logical_xor.end.annobin_BYTE_square_avx2.start.annobin_BYTE_square_avx2.end.annobin_BYTE_reciprocal_avx2.start.annobin_BYTE_reciprocal_avx2.end.annobin_BYTE_conjugate_avx2.start.annobin_BYTE_conjugate_avx2.end.annobin_BYTE_negative_avx2.start.annobin_BYTE_negative_avx2.end.annobin_BYTE_logical_not_avx2.start.annobin_BYTE_logical_not_avx2.end.annobin_BYTE_invert_avx2.start.annobin_BYTE_invert_avx2.end.annobin_BYTE_add_avx2.start.annobin_BYTE_add_avx2.end.annobin_BYTE_subtract_avx2.start.annobin_BYTE_subtract_avx2.end.annobin_BYTE_multiply_avx2.start.annobin_BYTE_multiply_avx2.end.annobin_BYTE_bitwise_and_avx2.start.annobin_BYTE_bitwise_and_avx2.end.annobin_BYTE_bitwise_or_avx2.start.annobin_BYTE_bitwise_or_avx2.end.annobin_BYTE_bitwise_xor_avx2.start.annobin_BYTE_bitwise_xor_avx2.end.annobin_BYTE_left_shift_avx2.start.annobin_BYTE_left_shift_avx2.end.annobin_BYTE_right_shift_avx2.start.annobin_BYTE_right_shift_avx2.end.annobin_BYTE_equal_avx2.start.annobin_BYTE_equal_avx2.end.annobin_BYTE_not_equal_avx2.start.annobin_BYTE_not_equal_avx2.end.annobin_BYTE_greater_avx2.start.annobin_BYTE_greater_avx2.end.annobin_BYTE_greater_equal_avx2.start.annobin_BYTE_greater_equal_avx2.end.annobin_BYTE_less_avx2.start.annobin_BYTE_less_avx2.end.annobin_BYTE_less_equal_avx2.start.annobin_BYTE_less_equal_avx2.end.annobin_BYTE_logical_and_avx2.start.annobin_BYTE_logical_and_avx2.end.annobin_BYTE_logical_or_avx2.start.annobin_BYTE_logical_or_avx2.end.annobin_BYTE_logical_xor_avx2.start.annobin_BYTE_logical_xor_avx2.end.annobin_BYTE_maximum.start.annobin_BYTE_maximum.end.annobin_BYTE_minimum.start.annobin_BYTE_minimum.end.annobin_BYTE_power.start.annobin_BYTE_power.end.annobin_BYTE_fmod.start.annobin_BYTE_fmod.end.annobin_UBYTE__ones_like.start.annobin_UBYTE__ones_like.end.annobin_UBYTE_positive.start.annobin_UBYTE_positive.end.annobin_UBYTE_square.start.annobin_UBYTE_square.end.annobin_UBYTE_reciprocal.start.annobin_UBYTE_reciprocal.end.annobin_UBYTE_conjugate.start.annobin_UBYTE_conjugate.end.annobin_UBYTE_negative.start.annobin_UBYTE_negative.end.annobin_UBYTE_logical_not.start.annobin_UBYTE_logical_not.end.annobin_UBYTE_invert.start.annobin_UBYTE_invert.end.annobin_UBYTE_add.start.annobin_UBYTE_add.end.annobin_UBYTE_subtract.start.annobin_UBYTE_subtract.end.annobin_UBYTE_multiply.start.annobin_UBYTE_multiply.end.annobin_UBYTE_bitwise_and.start.annobin_UBYTE_bitwise_and.end.annobin_UBYTE_bitwise_or.start.annobin_UBYTE_bitwise_or.end.annobin_UBYTE_bitwise_xor.start.annobin_UBYTE_bitwise_xor.end.annobin_UBYTE_left_shift.start.annobin_UBYTE_left_shift.end.annobin_UBYTE_right_shift.start.annobin_UBYTE_right_shift.end.annobin_UBYTE_equal.start.annobin_UBYTE_equal.end.annobin_UBYTE_not_equal.start.annobin_UBYTE_not_equal.end.annobin_UBYTE_greater.start.annobin_UBYTE_greater.end.annobin_UBYTE_greater_equal.start.annobin_UBYTE_greater_equal.end.annobin_UBYTE_less.start.annobin_UBYTE_less.end.annobin_UBYTE_less_equal.start.annobin_UBYTE_less_equal.end.annobin_UBYTE_logical_and.start.annobin_UBYTE_logical_and.end.annobin_UBYTE_logical_or.start.annobin_UBYTE_logical_or.end.annobin_UBYTE_logical_xor.start.annobin_UBYTE_logical_xor.end.annobin_UBYTE_square_avx2.start.annobin_UBYTE_square_avx2.end.annobin_UBYTE_reciprocal_avx2.start.annobin_UBYTE_reciprocal_avx2.end.annobin_UBYTE_conjugate_avx2.start.annobin_UBYTE_conjugate_avx2.end.annobin_UBYTE_negative_avx2.start.annobin_UBYTE_negative_avx2.end.annobin_UBYTE_logical_not_avx2.start.annobin_UBYTE_logical_not_avx2.end.annobin_UBYTE_invert_avx2.start.annobin_UBYTE_invert_avx2.end.annobin_UBYTE_add_avx2.start.annobin_UBYTE_add_avx2.end.annobin_UBYTE_subtract_avx2.start.annobin_UBYTE_subtract_avx2.end.annobin_UBYTE_multiply_avx2.start.annobin_UBYTE_multiply_avx2.end.annobin_UBYTE_bitwise_and_avx2.start.annobin_UBYTE_bitwise_and_avx2.end.annobin_UBYTE_bitwise_or_avx2.start.annobin_UBYTE_bitwise_or_avx2.end.annobin_UBYTE_bitwise_xor_avx2.start.annobin_UBYTE_bitwise_xor_avx2.end.annobin_UBYTE_left_shift_avx2.start.annobin_UBYTE_left_shift_avx2.end.annobin_UBYTE_right_shift_avx2.start.annobin_UBYTE_right_shift_avx2.end.annobin_UBYTE_equal_avx2.start.annobin_UBYTE_equal_avx2.end.annobin_UBYTE_not_equal_avx2.start.annobin_UBYTE_not_equal_avx2.end.annobin_UBYTE_greater_avx2.start.annobin_UBYTE_greater_avx2.end.annobin_UBYTE_greater_equal_avx2.start.annobin_UBYTE_greater_equal_avx2.end.annobin_UBYTE_less_avx2.start.annobin_UBYTE_less_avx2.end.annobin_UBYTE_less_equal_avx2.start.annobin_UBYTE_less_equal_avx2.end.annobin_UBYTE_logical_and_avx2.start.annobin_UBYTE_logical_and_avx2.end.annobin_UBYTE_logical_or_avx2.start.annobin_UBYTE_logical_or_avx2.end.annobin_UBYTE_logical_xor_avx2.start.annobin_UBYTE_logical_xor_avx2.end.annobin_UBYTE_maximum.start.annobin_UBYTE_maximum.end.annobin_UBYTE_minimum.start.annobin_UBYTE_minimum.end.annobin_UBYTE_power.start.annobin_UBYTE_power.end.annobin_UBYTE_fmod.start.annobin_UBYTE_fmod.end.annobin_SHORT__ones_like.start.annobin_SHORT__ones_like.end.annobin_SHORT_positive.start.annobin_SHORT_positive.end.annobin_SHORT_square.start.annobin_SHORT_square.end.annobin_SHORT_reciprocal.start.annobin_SHORT_reciprocal.end.annobin_SHORT_conjugate.start.annobin_SHORT_conjugate.end.annobin_SHORT_negative.start.annobin_SHORT_negative.end.annobin_SHORT_logical_not.start.annobin_SHORT_logical_not.end.annobin_SHORT_invert.start.annobin_SHORT_invert.end.annobin_SHORT_add.start.annobin_SHORT_add.end.annobin_SHORT_subtract.start.annobin_SHORT_subtract.end.annobin_SHORT_multiply.start.annobin_SHORT_multiply.end.annobin_SHORT_bitwise_and.start.annobin_SHORT_bitwise_and.end.annobin_SHORT_bitwise_or.start.annobin_SHORT_bitwise_or.end.annobin_SHORT_bitwise_xor.start.annobin_SHORT_bitwise_xor.end.annobin_SHORT_left_shift.start.annobin_SHORT_left_shift.end.annobin_SHORT_right_shift.start.annobin_SHORT_right_shift.end.annobin_SHORT_equal.start.annobin_SHORT_equal.end.annobin_SHORT_not_equal.start.annobin_SHORT_not_equal.end.annobin_SHORT_greater.start.annobin_SHORT_greater.end.annobin_SHORT_greater_equal.start.annobin_SHORT_greater_equal.end.annobin_SHORT_less.start.annobin_SHORT_less.end.annobin_SHORT_less_equal.start.annobin_SHORT_less_equal.end.annobin_SHORT_logical_and.start.annobin_SHORT_logical_and.end.annobin_SHORT_logical_or.start.annobin_SHORT_logical_or.end.annobin_SHORT_logical_xor.start.annobin_SHORT_logical_xor.end.annobin_SHORT_square_avx2.start.annobin_SHORT_square_avx2.end.annobin_SHORT_reciprocal_avx2.start.annobin_SHORT_reciprocal_avx2.end.annobin_SHORT_conjugate_avx2.start.annobin_SHORT_conjugate_avx2.end.annobin_SHORT_negative_avx2.start.annobin_SHORT_negative_avx2.end.annobin_SHORT_logical_not_avx2.start.annobin_SHORT_logical_not_avx2.end.annobin_SHORT_invert_avx2.start.annobin_SHORT_invert_avx2.end.annobin_SHORT_add_avx2.start.annobin_SHORT_add_avx2.end.annobin_SHORT_subtract_avx2.start.annobin_SHORT_subtract_avx2.end.annobin_SHORT_multiply_avx2.start.annobin_SHORT_multiply_avx2.end.annobin_SHORT_bitwise_and_avx2.start.annobin_SHORT_bitwise_and_avx2.end.annobin_SHORT_bitwise_or_avx2.start.annobin_SHORT_bitwise_or_avx2.end.annobin_SHORT_bitwise_xor_avx2.start.annobin_SHORT_bitwise_xor_avx2.end.annobin_SHORT_left_shift_avx2.start.annobin_SHORT_left_shift_avx2.end.annobin_SHORT_right_shift_avx2.start.annobin_SHORT_right_shift_avx2.end.annobin_SHORT_equal_avx2.start.annobin_SHORT_equal_avx2.end.annobin_SHORT_not_equal_avx2.start.annobin_SHORT_not_equal_avx2.end.annobin_SHORT_greater_avx2.start.annobin_SHORT_greater_avx2.end.annobin_SHORT_greater_equal_avx2.start.annobin_SHORT_greater_equal_avx2.end.annobin_SHORT_less_avx2.start.annobin_SHORT_less_avx2.end.annobin_SHORT_less_equal_avx2.start.annobin_SHORT_less_equal_avx2.end.annobin_SHORT_logical_and_avx2.start.annobin_SHORT_logical_and_avx2.end.annobin_SHORT_logical_or_avx2.start.annobin_SHORT_logical_or_avx2.end.annobin_SHORT_logical_xor_avx2.start.annobin_SHORT_logical_xor_avx2.end.annobin_SHORT_maximum.start.annobin_SHORT_maximum.end.annobin_SHORT_minimum.start.annobin_SHORT_minimum.end.annobin_SHORT_power.start.annobin_SHORT_power.end.annobin_SHORT_fmod.start.annobin_SHORT_fmod.end.annobin_USHORT__ones_like.start.annobin_USHORT__ones_like.end.annobin_USHORT_positive.start.annobin_USHORT_positive.end.annobin_USHORT_square.start.annobin_USHORT_square.end.annobin_USHORT_reciprocal.start.annobin_USHORT_reciprocal.end.annobin_USHORT_conjugate.start.annobin_USHORT_conjugate.end.annobin_USHORT_negative.start.annobin_USHORT_negative.end.annobin_USHORT_logical_not.start.annobin_USHORT_logical_not.end.annobin_USHORT_invert.start.annobin_USHORT_invert.end.annobin_USHORT_add.start.annobin_USHORT_add.end.annobin_USHORT_subtract.start.annobin_USHORT_subtract.end.annobin_USHORT_multiply.start.annobin_USHORT_multiply.end.annobin_USHORT_bitwise_and.start.annobin_USHORT_bitwise_and.end.annobin_USHORT_bitwise_or.start.annobin_USHORT_bitwise_or.end.annobin_USHORT_bitwise_xor.start.annobin_USHORT_bitwise_xor.end.annobin_USHORT_left_shift.start.annobin_USHORT_left_shift.end.annobin_USHORT_right_shift.start.annobin_USHORT_right_shift.end.annobin_USHORT_equal.start.annobin_USHORT_equal.end.annobin_USHORT_not_equal.start.annobin_USHORT_not_equal.end.annobin_USHORT_greater.start.annobin_USHORT_greater.end.annobin_USHORT_greater_equal.start.annobin_USHORT_greater_equal.end.annobin_USHORT_less.start.annobin_USHORT_less.end.annobin_USHORT_less_equal.start.annobin_USHORT_less_equal.end.annobin_USHORT_logical_and.start.annobin_USHORT_logical_and.end.annobin_USHORT_logical_or.start.annobin_USHORT_logical_or.end.annobin_USHORT_logical_xor.start.annobin_USHORT_logical_xor.end.annobin_USHORT_square_avx2.start.annobin_USHORT_square_avx2.end.annobin_USHORT_reciprocal_avx2.start.annobin_USHORT_reciprocal_avx2.end.annobin_USHORT_conjugate_avx2.start.annobin_USHORT_conjugate_avx2.end.annobin_USHORT_negative_avx2.start.annobin_USHORT_negative_avx2.end.annobin_USHORT_logical_not_avx2.start.annobin_USHORT_logical_not_avx2.end.annobin_USHORT_invert_avx2.start.annobin_USHORT_invert_avx2.end.annobin_USHORT_add_avx2.start.annobin_USHORT_add_avx2.end.annobin_USHORT_subtract_avx2.start.annobin_USHORT_subtract_avx2.end.annobin_USHORT_multiply_avx2.start.annobin_USHORT_multiply_avx2.end.annobin_USHORT_bitwise_and_avx2.start.annobin_USHORT_bitwise_and_avx2.end.annobin_USHORT_bitwise_or_avx2.start.annobin_USHORT_bitwise_or_avx2.end.annobin_USHORT_bitwise_xor_avx2.start.annobin_USHORT_bitwise_xor_avx2.end.annobin_USHORT_left_shift_avx2.start.annobin_USHORT_left_shift_avx2.end.annobin_USHORT_right_shift_avx2.start.annobin_USHORT_right_shift_avx2.end.annobin_USHORT_equal_avx2.start.annobin_USHORT_equal_avx2.end.annobin_USHORT_not_equal_avx2.start.annobin_USHORT_not_equal_avx2.end.annobin_USHORT_greater_avx2.start.annobin_USHORT_greater_avx2.end.annobin_USHORT_greater_equal_avx2.start.annobin_USHORT_greater_equal_avx2.end.annobin_USHORT_less_avx2.start.annobin_USHORT_less_avx2.end.annobin_USHORT_less_equal_avx2.start.annobin_USHORT_less_equal_avx2.end.annobin_USHORT_logical_and_avx2.start.annobin_USHORT_logical_and_avx2.end.annobin_USHORT_logical_or_avx2.start.annobin_USHORT_logical_or_avx2.end.annobin_USHORT_logical_xor_avx2.start.annobin_USHORT_logical_xor_avx2.end.annobin_USHORT_maximum.start.annobin_USHORT_maximum.end.annobin_USHORT_minimum.start.annobin_USHORT_minimum.end.annobin_USHORT_power.start.annobin_USHORT_power.end.annobin_USHORT_fmod.start.annobin_USHORT_fmod.end.annobin_INT__ones_like.start.annobin_INT__ones_like.end.annobin_INT_positive.start.annobin_INT_positive.end.annobin_INT_square.start.annobin_INT_square.end.annobin_INT_reciprocal.start.annobin_INT_reciprocal.end.annobin_INT_conjugate.start.annobin_INT_conjugate.end.annobin_INT_negative.start.annobin_INT_negative.end.annobin_INT_logical_not.start.annobin_INT_logical_not.end.annobin_INT_invert.start.annobin_INT_invert.end.annobin_INT_add.start.annobin_INT_add.end.annobin_INT_subtract.start.annobin_INT_subtract.end.annobin_INT_multiply.start.annobin_INT_multiply.end.annobin_INT_bitwise_and.start.annobin_INT_bitwise_and.end.annobin_INT_bitwise_or.start.annobin_INT_bitwise_or.end.annobin_INT_bitwise_xor.start.annobin_INT_bitwise_xor.end.annobin_INT_left_shift.start.annobin_INT_left_shift.end.annobin_INT_right_shift.start.annobin_INT_right_shift.end.annobin_INT_equal.start.annobin_INT_equal.end.annobin_INT_not_equal.start.annobin_INT_not_equal.end.annobin_INT_greater.start.annobin_INT_greater.end.annobin_INT_greater_equal.start.annobin_INT_greater_equal.end.annobin_INT_less.start.annobin_INT_less.end.annobin_INT_less_equal.start.annobin_INT_less_equal.end.annobin_INT_logical_and.start.annobin_INT_logical_and.end.annobin_INT_logical_or.start.annobin_INT_logical_or.end.annobin_INT_logical_xor.start.annobin_INT_logical_xor.end.annobin_INT_square_avx2.start.annobin_INT_square_avx2.end.annobin_INT_reciprocal_avx2.start.annobin_INT_reciprocal_avx2.end.annobin_INT_conjugate_avx2.start.annobin_INT_conjugate_avx2.end.annobin_INT_negative_avx2.start.annobin_INT_negative_avx2.end.annobin_INT_logical_not_avx2.start.annobin_INT_logical_not_avx2.end.annobin_INT_invert_avx2.start.annobin_INT_invert_avx2.end.annobin_INT_add_avx2.start.annobin_INT_add_avx2.end.annobin_INT_subtract_avx2.start.annobin_INT_subtract_avx2.end.annobin_INT_multiply_avx2.start.annobin_INT_multiply_avx2.end.annobin_INT_bitwise_and_avx2.start.annobin_INT_bitwise_and_avx2.end.annobin_INT_bitwise_or_avx2.start.annobin_INT_bitwise_or_avx2.end.annobin_INT_bitwise_xor_avx2.start.annobin_INT_bitwise_xor_avx2.end.annobin_INT_left_shift_avx2.start.annobin_INT_left_shift_avx2.end.annobin_INT_right_shift_avx2.start.annobin_INT_right_shift_avx2.end.annobin_INT_equal_avx2.start.annobin_INT_equal_avx2.end.annobin_INT_not_equal_avx2.start.annobin_INT_not_equal_avx2.end.annobin_INT_greater_avx2.start.annobin_INT_greater_avx2.end.annobin_INT_greater_equal_avx2.start.annobin_INT_greater_equal_avx2.end.annobin_INT_less_avx2.start.annobin_INT_less_avx2.end.annobin_INT_less_equal_avx2.start.annobin_INT_less_equal_avx2.end.annobin_INT_logical_and_avx2.start.annobin_INT_logical_and_avx2.end.annobin_INT_logical_or_avx2.start.annobin_INT_logical_or_avx2.end.annobin_INT_logical_xor_avx2.start.annobin_INT_logical_xor_avx2.end.annobin_INT_maximum.start.annobin_INT_maximum.end.annobin_INT_minimum.start.annobin_INT_minimum.end.annobin_INT_power.start.annobin_INT_power.end.annobin_INT_fmod.start.annobin_INT_fmod.end.annobin_UINT__ones_like.start.annobin_UINT__ones_like.end.annobin_UINT_positive.start.annobin_UINT_positive.end.annobin_UINT_square.start.annobin_UINT_square.end.annobin_UINT_reciprocal.start.annobin_UINT_reciprocal.end.annobin_UINT_conjugate.start.annobin_UINT_conjugate.end.annobin_UINT_negative.start.annobin_UINT_negative.end.annobin_UINT_logical_not.start.annobin_UINT_logical_not.end.annobin_UINT_invert.start.annobin_UINT_invert.end.annobin_UINT_add.start.annobin_UINT_add.end.annobin_UINT_subtract.start.annobin_UINT_subtract.end.annobin_UINT_multiply.start.annobin_UINT_multiply.end.annobin_UINT_bitwise_and.start.annobin_UINT_bitwise_and.end.annobin_UINT_bitwise_or.start.annobin_UINT_bitwise_or.end.annobin_UINT_bitwise_xor.start.annobin_UINT_bitwise_xor.end.annobin_UINT_left_shift.start.annobin_UINT_left_shift.end.annobin_UINT_right_shift.start.annobin_UINT_right_shift.end.annobin_UINT_equal.start.annobin_UINT_equal.end.annobin_UINT_not_equal.start.annobin_UINT_not_equal.end.annobin_UINT_greater.start.annobin_UINT_greater.end.annobin_UINT_greater_equal.start.annobin_UINT_greater_equal.end.annobin_UINT_less.start.annobin_UINT_less.end.annobin_UINT_less_equal.start.annobin_UINT_less_equal.end.annobin_UINT_logical_and.start.annobin_UINT_logical_and.end.annobin_UINT_logical_or.start.annobin_UINT_logical_or.end.annobin_UINT_logical_xor.start.annobin_UINT_logical_xor.end.annobin_UINT_square_avx2.start.annobin_UINT_square_avx2.end.annobin_UINT_reciprocal_avx2.start.annobin_UINT_reciprocal_avx2.end.annobin_UINT_conjugate_avx2.start.annobin_UINT_conjugate_avx2.end.annobin_UINT_negative_avx2.start.annobin_UINT_negative_avx2.end.annobin_UINT_logical_not_avx2.start.annobin_UINT_logical_not_avx2.end.annobin_UINT_invert_avx2.start.annobin_UINT_invert_avx2.end.annobin_UINT_add_avx2.start.annobin_UINT_add_avx2.end.annobin_UINT_subtract_avx2.start.annobin_UINT_subtract_avx2.end.annobin_UINT_multiply_avx2.start.annobin_UINT_multiply_avx2.end.annobin_UINT_bitwise_and_avx2.start.annobin_UINT_bitwise_and_avx2.end.annobin_UINT_bitwise_or_avx2.start.annobin_UINT_bitwise_or_avx2.end.annobin_UINT_bitwise_xor_avx2.start.annobin_UINT_bitwise_xor_avx2.end.annobin_UINT_left_shift_avx2.start.annobin_UINT_left_shift_avx2.end.annobin_UINT_right_shift_avx2.start.annobin_UINT_right_shift_avx2.end.annobin_UINT_equal_avx2.start.annobin_UINT_equal_avx2.end.annobin_UINT_not_equal_avx2.start.annobin_UINT_not_equal_avx2.end.annobin_UINT_greater_avx2.start.annobin_UINT_greater_avx2.end.annobin_UINT_greater_equal_avx2.start.annobin_UINT_greater_equal_avx2.end.annobin_UINT_less_avx2.start.annobin_UINT_less_avx2.end.annobin_UINT_less_equal_avx2.start.annobin_UINT_less_equal_avx2.end.annobin_UINT_logical_and_avx2.start.annobin_UINT_logical_and_avx2.end.annobin_UINT_logical_or_avx2.start.annobin_UINT_logical_or_avx2.end.annobin_UINT_logical_xor_avx2.start.annobin_UINT_logical_xor_avx2.end.annobin_UINT_maximum.start.annobin_UINT_maximum.end.annobin_UINT_minimum.start.annobin_UINT_minimum.end.annobin_UINT_power.start.annobin_UINT_power.end.annobin_UINT_fmod.start.annobin_UINT_fmod.end.annobin_LONG__ones_like.start.annobin_LONG__ones_like.end.annobin_LONG_positive.start.annobin_LONG_positive.end.annobin_LONG_square.start.annobin_LONG_square.end.annobin_LONG_reciprocal.start.annobin_LONG_reciprocal.end.annobin_LONG_conjugate.start.annobin_LONG_conjugate.end.annobin_LONG_negative.start.annobin_LONG_negative.end.annobin_LONG_logical_not.start.annobin_LONG_logical_not.end.annobin_LONG_invert.start.annobin_LONG_invert.end.annobin_LONG_add.start.annobin_LONG_add.end.annobin_LONG_subtract.start.annobin_LONG_subtract.end.annobin_LONG_multiply.start.annobin_LONG_multiply.end.annobin_LONG_bitwise_and.start.annobin_LONG_bitwise_and.end.annobin_LONG_bitwise_or.start.annobin_LONG_bitwise_or.end.annobin_LONG_bitwise_xor.start.annobin_LONG_bitwise_xor.end.annobin_LONG_left_shift.start.annobin_LONG_left_shift.end.annobin_LONG_right_shift.start.annobin_LONG_right_shift.end.annobin_LONG_equal.start.annobin_LONG_equal.end.annobin_LONG_not_equal.start.annobin_LONG_not_equal.end.annobin_LONG_greater.start.annobin_LONG_greater.end.annobin_LONG_greater_equal.start.annobin_LONG_greater_equal.end.annobin_LONG_less.start.annobin_LONG_less.end.annobin_LONG_less_equal.start.annobin_LONG_less_equal.end.annobin_LONG_logical_and.start.annobin_LONG_logical_and.end.annobin_LONG_logical_or.start.annobin_LONG_logical_or.end.annobin_LONG_logical_xor.start.annobin_LONG_logical_xor.end.annobin_LONG_square_avx2.start.annobin_LONG_square_avx2.end.annobin_LONG_reciprocal_avx2.start.annobin_LONG_reciprocal_avx2.end.annobin_LONG_conjugate_avx2.start.annobin_LONG_conjugate_avx2.end.annobin_LONG_negative_avx2.start.annobin_LONG_negative_avx2.end.annobin_LONG_logical_not_avx2.start.annobin_LONG_logical_not_avx2.end.annobin_LONG_invert_avx2.start.annobin_LONG_invert_avx2.end.annobin_LONG_add_avx2.start.annobin_LONG_add_avx2.end.annobin_LONG_subtract_avx2.start.annobin_LONG_subtract_avx2.end.annobin_LONG_multiply_avx2.start.annobin_LONG_multiply_avx2.end.annobin_LONG_bitwise_and_avx2.start.annobin_LONG_bitwise_and_avx2.end.annobin_LONG_bitwise_or_avx2.start.annobin_LONG_bitwise_or_avx2.end.annobin_LONG_bitwise_xor_avx2.start.annobin_LONG_bitwise_xor_avx2.end.annobin_LONG_left_shift_avx2.start.annobin_LONG_left_shift_avx2.end.annobin_LONG_right_shift_avx2.start.annobin_LONG_right_shift_avx2.end.annobin_LONG_equal_avx2.start.annobin_LONG_equal_avx2.end.annobin_LONG_not_equal_avx2.start.annobin_LONG_not_equal_avx2.end.annobin_LONG_greater_avx2.start.annobin_LONG_greater_avx2.end.annobin_LONG_greater_equal_avx2.start.annobin_LONG_greater_equal_avx2.end.annobin_LONG_less_avx2.start.annobin_LONG_less_avx2.end.annobin_LONG_less_equal_avx2.start.annobin_LONG_less_equal_avx2.end.annobin_LONG_logical_and_avx2.start.annobin_LONG_logical_and_avx2.end.annobin_LONG_logical_or_avx2.start.annobin_LONG_logical_or_avx2.end.annobin_LONG_logical_xor_avx2.start.annobin_LONG_logical_xor_avx2.end.annobin_LONG_maximum.start.annobin_LONG_maximum.end.annobin_LONG_minimum.start.annobin_LONG_minimum.end.annobin_LONG_power.start.annobin_LONG_power.end.annobin_LONG_fmod.start.annobin_LONG_fmod.end.annobin_ULONG__ones_like.start.annobin_ULONG__ones_like.end.annobin_ULONG_positive.start.annobin_ULONG_positive.end.annobin_ULONG_square.start.annobin_ULONG_square.end.annobin_ULONG_reciprocal.start.annobin_ULONG_reciprocal.end.annobin_ULONG_conjugate.start.annobin_ULONG_conjugate.end.annobin_ULONG_negative.start.annobin_ULONG_negative.end.annobin_ULONG_logical_not.start.annobin_ULONG_logical_not.end.annobin_ULONG_invert.start.annobin_ULONG_invert.end.annobin_ULONG_add.start.annobin_ULONG_add.end.annobin_ULONG_subtract.start.annobin_ULONG_subtract.end.annobin_ULONG_multiply.start.annobin_ULONG_multiply.end.annobin_ULONG_bitwise_and.start.annobin_ULONG_bitwise_and.end.annobin_ULONG_bitwise_or.start.annobin_ULONG_bitwise_or.end.annobin_ULONG_bitwise_xor.start.annobin_ULONG_bitwise_xor.end.annobin_ULONG_left_shift.start.annobin_ULONG_left_shift.end.annobin_ULONG_right_shift.start.annobin_ULONG_right_shift.end.annobin_ULONG_equal.start.annobin_ULONG_equal.end.annobin_ULONG_not_equal.start.annobin_ULONG_not_equal.end.annobin_ULONG_greater.start.annobin_ULONG_greater.end.annobin_ULONG_greater_equal.start.annobin_ULONG_greater_equal.end.annobin_ULONG_less.start.annobin_ULONG_less.end.annobin_ULONG_less_equal.start.annobin_ULONG_less_equal.end.annobin_ULONG_logical_and.start.annobin_ULONG_logical_and.end.annobin_ULONG_logical_or.start.annobin_ULONG_logical_or.end.annobin_ULONG_logical_xor.start.annobin_ULONG_logical_xor.end.annobin_ULONG_square_avx2.start.annobin_ULONG_square_avx2.end.annobin_ULONG_reciprocal_avx2.start.annobin_ULONG_reciprocal_avx2.end.annobin_ULONG_conjugate_avx2.start.annobin_ULONG_conjugate_avx2.end.annobin_ULONG_negative_avx2.start.annobin_ULONG_negative_avx2.end.annobin_ULONG_logical_not_avx2.start.annobin_ULONG_logical_not_avx2.end.annobin_ULONG_invert_avx2.start.annobin_ULONG_invert_avx2.end.annobin_ULONG_add_avx2.start.annobin_ULONG_add_avx2.end.annobin_ULONG_subtract_avx2.start.annobin_ULONG_subtract_avx2.end.annobin_ULONG_multiply_avx2.start.annobin_ULONG_multiply_avx2.end.annobin_ULONG_bitwise_and_avx2.start.annobin_ULONG_bitwise_and_avx2.end.annobin_ULONG_bitwise_or_avx2.start.annobin_ULONG_bitwise_or_avx2.end.annobin_ULONG_bitwise_xor_avx2.start.annobin_ULONG_bitwise_xor_avx2.end.annobin_ULONG_left_shift_avx2.start.annobin_ULONG_left_shift_avx2.end.annobin_ULONG_right_shift_avx2.start.annobin_ULONG_right_shift_avx2.end.annobin_ULONG_equal_avx2.start.annobin_ULONG_equal_avx2.end.annobin_ULONG_not_equal_avx2.start.annobin_ULONG_not_equal_avx2.end.annobin_ULONG_greater_avx2.start.annobin_ULONG_greater_avx2.end.annobin_ULONG_greater_equal_avx2.start.annobin_ULONG_greater_equal_avx2.end.annobin_ULONG_less_avx2.start.annobin_ULONG_less_avx2.end.annobin_ULONG_less_equal_avx2.start.annobin_ULONG_less_equal_avx2.end.annobin_ULONG_logical_and_avx2.start.annobin_ULONG_logical_and_avx2.end.annobin_ULONG_logical_or_avx2.start.annobin_ULONG_logical_or_avx2.end.annobin_ULONG_logical_xor_avx2.start.annobin_ULONG_logical_xor_avx2.end.annobin_ULONG_maximum.start.annobin_ULONG_maximum.end.annobin_ULONG_minimum.start.annobin_ULONG_minimum.end.annobin_ULONG_power.start.annobin_ULONG_power.end.annobin_ULONG_fmod.start.annobin_ULONG_fmod.end.annobin_LONGLONG__ones_like.start.annobin_LONGLONG__ones_like.end.annobin_LONGLONG_positive.start.annobin_LONGLONG_positive.end.annobin_LONGLONG_square.start.annobin_LONGLONG_square.end.annobin_LONGLONG_reciprocal.start.annobin_LONGLONG_reciprocal.end.annobin_LONGLONG_conjugate.start.annobin_LONGLONG_conjugate.end.annobin_LONGLONG_negative.start.annobin_LONGLONG_negative.end.annobin_LONGLONG_logical_not.start.annobin_LONGLONG_logical_not.end.annobin_LONGLONG_invert.start.annobin_LONGLONG_invert.end.annobin_LONGLONG_add.start.annobin_LONGLONG_add.end.annobin_LONGLONG_subtract.start.annobin_LONGLONG_subtract.end.annobin_LONGLONG_multiply.start.annobin_LONGLONG_multiply.end.annobin_LONGLONG_bitwise_and.start.annobin_LONGLONG_bitwise_and.end.annobin_LONGLONG_bitwise_or.start.annobin_LONGLONG_bitwise_or.end.annobin_LONGLONG_bitwise_xor.start.annobin_LONGLONG_bitwise_xor.end.annobin_LONGLONG_left_shift.start.annobin_LONGLONG_left_shift.end.annobin_LONGLONG_right_shift.start.annobin_LONGLONG_right_shift.end.annobin_LONGLONG_equal.start.annobin_LONGLONG_equal.end.annobin_LONGLONG_not_equal.start.annobin_LONGLONG_not_equal.end.annobin_LONGLONG_greater.start.annobin_LONGLONG_greater.end.annobin_LONGLONG_greater_equal.start.annobin_LONGLONG_greater_equal.end.annobin_LONGLONG_less.start.annobin_LONGLONG_less.end.annobin_LONGLONG_less_equal.start.annobin_LONGLONG_less_equal.end.annobin_LONGLONG_logical_and.start.annobin_LONGLONG_logical_and.end.annobin_LONGLONG_logical_or.start.annobin_LONGLONG_logical_or.end.annobin_LONGLONG_logical_xor.start.annobin_LONGLONG_logical_xor.end.annobin_LONGLONG_square_avx2.start.annobin_LONGLONG_square_avx2.end.annobin_LONGLONG_reciprocal_avx2.start.annobin_LONGLONG_reciprocal_avx2.end.annobin_LONGLONG_conjugate_avx2.start.annobin_LONGLONG_conjugate_avx2.end.annobin_LONGLONG_negative_avx2.start.annobin_LONGLONG_negative_avx2.end.annobin_LONGLONG_logical_not_avx2.start.annobin_LONGLONG_logical_not_avx2.end.annobin_LONGLONG_invert_avx2.start.annobin_LONGLONG_invert_avx2.end.annobin_LONGLONG_add_avx2.start.annobin_LONGLONG_add_avx2.end.annobin_LONGLONG_subtract_avx2.start.annobin_LONGLONG_subtract_avx2.end.annobin_LONGLONG_multiply_avx2.start.annobin_LONGLONG_multiply_avx2.end.annobin_LONGLONG_bitwise_and_avx2.start.annobin_LONGLONG_bitwise_and_avx2.end.annobin_LONGLONG_bitwise_or_avx2.start.annobin_LONGLONG_bitwise_or_avx2.end.annobin_LONGLONG_bitwise_xor_avx2.start.annobin_LONGLONG_bitwise_xor_avx2.end.annobin_LONGLONG_left_shift_avx2.start.annobin_LONGLONG_left_shift_avx2.end.annobin_LONGLONG_right_shift_avx2.start.annobin_LONGLONG_right_shift_avx2.end.annobin_LONGLONG_equal_avx2.start.annobin_LONGLONG_equal_avx2.end.annobin_LONGLONG_not_equal_avx2.start.annobin_LONGLONG_not_equal_avx2.end.annobin_LONGLONG_greater_avx2.start.annobin_LONGLONG_greater_avx2.end.annobin_LONGLONG_greater_equal_avx2.start.annobin_LONGLONG_greater_equal_avx2.end.annobin_LONGLONG_less_avx2.start.annobin_LONGLONG_less_avx2.end.annobin_LONGLONG_less_equal_avx2.start.annobin_LONGLONG_less_equal_avx2.end.annobin_LONGLONG_logical_and_avx2.start.annobin_LONGLONG_logical_and_avx2.end.annobin_LONGLONG_logical_or_avx2.start.annobin_LONGLONG_logical_or_avx2.end.annobin_LONGLONG_logical_xor_avx2.start.annobin_LONGLONG_logical_xor_avx2.end.annobin_LONGLONG_maximum.start.annobin_LONGLONG_maximum.end.annobin_LONGLONG_minimum.start.annobin_LONGLONG_minimum.end.annobin_LONGLONG_power.start.annobin_LONGLONG_power.end.annobin_LONGLONG_fmod.start.annobin_LONGLONG_fmod.end.annobin_ULONGLONG__ones_like.start.annobin_ULONGLONG__ones_like.end.annobin_ULONGLONG_positive.start.annobin_ULONGLONG_positive.end.annobin_ULONGLONG_square.start.annobin_ULONGLONG_square.end.annobin_ULONGLONG_reciprocal.start.annobin_ULONGLONG_reciprocal.end.annobin_ULONGLONG_conjugate.start.annobin_ULONGLONG_conjugate.end.annobin_ULONGLONG_negative.start.annobin_ULONGLONG_negative.end.annobin_ULONGLONG_logical_not.start.annobin_ULONGLONG_logical_not.end.annobin_ULONGLONG_invert.start.annobin_ULONGLONG_invert.end.annobin_ULONGLONG_add.start.annobin_ULONGLONG_add.end.annobin_ULONGLONG_subtract.start.annobin_ULONGLONG_subtract.end.annobin_ULONGLONG_multiply.start.annobin_ULONGLONG_multiply.end.annobin_ULONGLONG_bitwise_and.start.annobin_ULONGLONG_bitwise_and.end.annobin_ULONGLONG_bitwise_or.start.annobin_ULONGLONG_bitwise_or.end.annobin_ULONGLONG_bitwise_xor.start.annobin_ULONGLONG_bitwise_xor.end.annobin_ULONGLONG_left_shift.start.annobin_ULONGLONG_left_shift.end.annobin_ULONGLONG_right_shift.start.annobin_ULONGLONG_right_shift.end.annobin_ULONGLONG_equal.start.annobin_ULONGLONG_equal.end.annobin_ULONGLONG_not_equal.start.annobin_ULONGLONG_not_equal.end.annobin_ULONGLONG_greater.start.annobin_ULONGLONG_greater.end.annobin_ULONGLONG_greater_equal.start.annobin_ULONGLONG_greater_equal.end.annobin_ULONGLONG_less.start.annobin_ULONGLONG_less.end.annobin_ULONGLONG_less_equal.start.annobin_ULONGLONG_less_equal.end.annobin_ULONGLONG_logical_and.start.annobin_ULONGLONG_logical_and.end.annobin_ULONGLONG_logical_or.start.annobin_ULONGLONG_logical_or.end.annobin_ULONGLONG_logical_xor.start.annobin_ULONGLONG_logical_xor.end.annobin_ULONGLONG_square_avx2.start.annobin_ULONGLONG_square_avx2.end.annobin_ULONGLONG_reciprocal_avx2.start.annobin_ULONGLONG_reciprocal_avx2.end.annobin_ULONGLONG_conjugate_avx2.start.annobin_ULONGLONG_conjugate_avx2.end.annobin_ULONGLONG_negative_avx2.start.annobin_ULONGLONG_negative_avx2.end.annobin_ULONGLONG_logical_not_avx2.start.annobin_ULONGLONG_logical_not_avx2.end.annobin_ULONGLONG_invert_avx2.start.annobin_ULONGLONG_invert_avx2.end.annobin_ULONGLONG_add_avx2.start.annobin_ULONGLONG_add_avx2.end.annobin_ULONGLONG_subtract_avx2.start.annobin_ULONGLONG_subtract_avx2.end.annobin_ULONGLONG_multiply_avx2.start.annobin_ULONGLONG_multiply_avx2.end.annobin_ULONGLONG_bitwise_and_avx2.start.annobin_ULONGLONG_bitwise_and_avx2.end.annobin_ULONGLONG_bitwise_or_avx2.start.annobin_ULONGLONG_bitwise_or_avx2.end.annobin_ULONGLONG_bitwise_xor_avx2.start.annobin_ULONGLONG_bitwise_xor_avx2.end.annobin_ULONGLONG_left_shift_avx2.start.annobin_ULONGLONG_left_shift_avx2.end.annobin_ULONGLONG_right_shift_avx2.start.annobin_ULONGLONG_right_shift_avx2.end.annobin_ULONGLONG_equal_avx2.start.annobin_ULONGLONG_equal_avx2.end.annobin_ULONGLONG_not_equal_avx2.start.annobin_ULONGLONG_not_equal_avx2.end.annobin_ULONGLONG_greater_avx2.start.annobin_ULONGLONG_greater_avx2.end.annobin_ULONGLONG_greater_equal_avx2.start.annobin_ULONGLONG_greater_equal_avx2.end.annobin_ULONGLONG_less_avx2.start.annobin_ULONGLONG_less_avx2.end.annobin_ULONGLONG_less_equal_avx2.start.annobin_ULONGLONG_less_equal_avx2.end.annobin_ULONGLONG_logical_and_avx2.start.annobin_ULONGLONG_logical_and_avx2.end.annobin_ULONGLONG_logical_or_avx2.start.annobin_ULONGLONG_logical_or_avx2.end.annobin_ULONGLONG_logical_xor_avx2.start.annobin_ULONGLONG_logical_xor_avx2.end.annobin_ULONGLONG_maximum.start.annobin_ULONGLONG_maximum.end.annobin_ULONGLONG_minimum.start.annobin_ULONGLONG_minimum.end.annobin_ULONGLONG_power.start.annobin_ULONGLONG_power.end.annobin_ULONGLONG_fmod.start.annobin_ULONGLONG_fmod.end.annobin_BYTE_absolute.start.annobin_BYTE_absolute.end.annobin_BYTE_sign.start.annobin_BYTE_sign.end.annobin_BYTE_divide.start.annobin_BYTE_divide.end.annobin_BYTE_remainder.start.annobin_BYTE_remainder.end.annobin_BYTE_divmod.start.annobin_BYTE_divmod.end.annobin_SHORT_absolute.start.annobin_SHORT_absolute.end.annobin_SHORT_sign.start.annobin_SHORT_sign.end.annobin_SHORT_divide.start.annobin_SHORT_divide.end.annobin_SHORT_remainder.start.annobin_SHORT_remainder.end.annobin_SHORT_divmod.start.annobin_SHORT_divmod.end.annobin_INT_absolute.start.annobin_INT_absolute.end.annobin_INT_sign.start.annobin_INT_sign.end.annobin_INT_divide.start.annobin_INT_divide.end.annobin_INT_remainder.start.annobin_INT_remainder.end.annobin_INT_divmod.start.annobin_INT_divmod.end.annobin_LONG_absolute.start.annobin_LONG_absolute.end.annobin_LONG_sign.start.annobin_LONG_sign.end.annobin_LONG_divide.start.annobin_LONG_divide.end.annobin_LONG_remainder.start.annobin_LONG_remainder.end.annobin_LONG_divmod.start.annobin_LONG_divmod.end.annobin_LONGLONG_absolute.start.annobin_LONGLONG_absolute.end.annobin_LONGLONG_sign.start.annobin_LONGLONG_sign.end.annobin_LONGLONG_divide.start.annobin_LONGLONG_divide.end.annobin_LONGLONG_remainder.start.annobin_LONGLONG_remainder.end.annobin_LONGLONG_divmod.start.annobin_LONGLONG_divmod.end.annobin_UBYTE_absolute.start.annobin_UBYTE_absolute.end.annobin_UBYTE_sign.start.annobin_UBYTE_sign.end.annobin_UBYTE_divide.start.annobin_UBYTE_divide.end.annobin_UBYTE_remainder.start.annobin_UBYTE_remainder.end.annobin_UBYTE_divmod.start.annobin_UBYTE_divmod.end.annobin_USHORT_absolute.start.annobin_USHORT_absolute.end.annobin_USHORT_sign.start.annobin_USHORT_sign.end.annobin_USHORT_divide.start.annobin_USHORT_divide.end.annobin_USHORT_remainder.start.annobin_USHORT_remainder.end.annobin_USHORT_divmod.start.annobin_USHORT_divmod.end.annobin_UINT_absolute.start.annobin_UINT_absolute.end.annobin_UINT_sign.start.annobin_UINT_sign.end.annobin_UINT_divide.start.annobin_UINT_divide.end.annobin_UINT_remainder.start.annobin_UINT_remainder.end.annobin_UINT_divmod.start.annobin_UINT_divmod.end.annobin_ULONG_absolute.start.annobin_ULONG_absolute.end.annobin_ULONG_sign.start.annobin_ULONG_sign.end.annobin_ULONG_divide.start.annobin_ULONG_divide.end.annobin_ULONG_remainder.start.annobin_ULONG_remainder.end.annobin_ULONG_divmod.start.annobin_ULONG_divmod.end.annobin_ULONGLONG_absolute.start.annobin_ULONGLONG_absolute.end.annobin_ULONGLONG_sign.start.annobin_ULONGLONG_sign.end.annobin_ULONGLONG_divide.start.annobin_ULONGLONG_divide.end.annobin_ULONGLONG_remainder.start.annobin_ULONGLONG_remainder.end.annobin_ULONGLONG_divmod.start.annobin_ULONGLONG_divmod.end.annobin_TIMEDELTA_negative.start.annobin_TIMEDELTA_negative.end.annobin_TIMEDELTA_positive.start.annobin_TIMEDELTA_positive.end.annobin_TIMEDELTA_absolute.start.annobin_TIMEDELTA_absolute.end.annobin_TIMEDELTA_sign.start.annobin_TIMEDELTA_sign.end.annobin_DATETIME_isnat.start.annobin_DATETIME_isnat.end.annobin_DATETIME__ones_like.start.annobin_DATETIME__ones_like.end.annobin_DATETIME_equal.start.annobin_DATETIME_equal.end.annobin_DATETIME_greater.start.annobin_DATETIME_greater.end.annobin_DATETIME_greater_equal.start.annobin_DATETIME_greater_equal.end.annobin_DATETIME_less.start.annobin_DATETIME_less.end.annobin_DATETIME_less_equal.start.annobin_DATETIME_less_equal.end.annobin_DATETIME_not_equal.start.annobin_DATETIME_not_equal.end.annobin_DATETIME_maximum.start.annobin_DATETIME_maximum.end.annobin_DATETIME_minimum.start.annobin_DATETIME_minimum.end.annobin_TIMEDELTA_isnat.start.annobin_TIMEDELTA_isnat.end.annobin_TIMEDELTA__ones_like.start.annobin_TIMEDELTA__ones_like.end.annobin_TIMEDELTA_equal.start.annobin_TIMEDELTA_equal.end.annobin_TIMEDELTA_greater.start.annobin_TIMEDELTA_greater.end.annobin_TIMEDELTA_greater_equal.start.annobin_TIMEDELTA_greater_equal.end.annobin_TIMEDELTA_less.start.annobin_TIMEDELTA_less.end.annobin_TIMEDELTA_less_equal.start.annobin_TIMEDELTA_less_equal.end.annobin_TIMEDELTA_not_equal.start.annobin_TIMEDELTA_not_equal.end.annobin_TIMEDELTA_maximum.start.annobin_TIMEDELTA_maximum.end.annobin_TIMEDELTA_minimum.start.annobin_TIMEDELTA_minimum.end.annobin_DATETIME_Mm_M_add.start.annobin_DATETIME_Mm_M_add.end.annobin_DATETIME_mM_M_add.start.annobin_DATETIME_mM_M_add.end.annobin_TIMEDELTA_mm_m_add.start.annobin_TIMEDELTA_mm_m_add.end.annobin_DATETIME_Mm_M_subtract.start.annobin_DATETIME_Mm_M_subtract.end.annobin_DATETIME_MM_m_subtract.start.annobin_DATETIME_MM_m_subtract.end.annobin_TIMEDELTA_mm_m_subtract.start.annobin_TIMEDELTA_mm_m_subtract.end.annobin_TIMEDELTA_mq_m_multiply.start.annobin_TIMEDELTA_mq_m_multiply.end.annobin_TIMEDELTA_qm_m_multiply.start.annobin_TIMEDELTA_qm_m_multiply.end.annobin_TIMEDELTA_md_m_multiply.start.annobin_TIMEDELTA_md_m_multiply.end.annobin_TIMEDELTA_dm_m_multiply.start.annobin_TIMEDELTA_dm_m_multiply.end.annobin_TIMEDELTA_mq_m_divide.start.annobin_TIMEDELTA_mq_m_divide.end.annobin_TIMEDELTA_md_m_divide.start.annobin_TIMEDELTA_md_m_divide.end.annobin_TIMEDELTA_mm_d_divide.start.annobin_TIMEDELTA_mm_d_divide.end.annobin_FLOAT_sqrt.start.annobin_FLOAT_sqrt.end.annobin_DOUBLE_sqrt.start.annobin_DOUBLE_sqrt.end.annobin_FLOAT_add.start.annobin_FLOAT_add.end.annobin_FLOAT_subtract.start.annobin_FLOAT_subtract.end.annobin_FLOAT_multiply.start.annobin_FLOAT_multiply.end.annobin_FLOAT_divide.start.annobin_FLOAT_divide.end.annobin_FLOAT_equal.start.annobin_FLOAT_equal.end.annobin_FLOAT_not_equal.start.annobin_FLOAT_not_equal.end.annobin_FLOAT_less.start.annobin_FLOAT_less.end.annobin_FLOAT_less_equal.start.annobin_FLOAT_less_equal.end.annobin_FLOAT_greater.start.annobin_FLOAT_greater.end.annobin_FLOAT_greater_equal.start.annobin_FLOAT_greater_equal.end.annobin_FLOAT_logical_and.start.annobin_FLOAT_logical_and.end.annobin_FLOAT_logical_or.start.annobin_FLOAT_logical_or.end.annobin_FLOAT_logical_xor.start.annobin_FLOAT_logical_xor.end.annobin_FLOAT_logical_not.start.annobin_FLOAT_logical_not.end.annobin_FLOAT_isnan.start.annobin_FLOAT_isnan.end.annobin_FLOAT_isinf.start.annobin_FLOAT_isinf.end.annobin_FLOAT_isfinite.start.annobin_FLOAT_isfinite.end.annobin_FLOAT_signbit.start.annobin_FLOAT_signbit.end.annobin_FLOAT_spacing.start.annobin_FLOAT_spacing.end.annobin_FLOAT_copysign.start.annobin_FLOAT_copysign.end.annobin_FLOAT_nextafter.start.annobin_FLOAT_nextafter.end.annobin_FLOAT_maximum.start.annobin_FLOAT_maximum.end.annobin_FLOAT_minimum.start.annobin_FLOAT_minimum.end.annobin_FLOAT_fmax.start.annobin_FLOAT_fmax.end.annobin_FLOAT_fmin.start.annobin_FLOAT_fmin.end.annobin_FLOAT_floor_divide.start.annobin_FLOAT_floor_divide.end.annobin_FLOAT_remainder.start.annobin_FLOAT_remainder.end.annobin_FLOAT_divmod.start.annobin_FLOAT_divmod.end.annobin_FLOAT_square.start.annobin_FLOAT_square.end.annobin_FLOAT_reciprocal.start.annobin_FLOAT_reciprocal.end.annobin_FLOAT__ones_like.start.annobin_FLOAT__ones_like.end.annobin_FLOAT_conjugate.start.annobin_FLOAT_conjugate.end.annobin_FLOAT_absolute.start.annobin_FLOAT_absolute.end.annobin_FLOAT_negative.start.annobin_FLOAT_negative.end.annobin_FLOAT_positive.start.annobin_FLOAT_positive.end.annobin_FLOAT_sign.start.annobin_FLOAT_sign.end.annobin_FLOAT_modf.start.annobin_FLOAT_modf.end.annobin_FLOAT_frexp.start.annobin_FLOAT_frexp.end.annobin_FLOAT_ldexp.start.annobin_FLOAT_ldexp.end.annobin_FLOAT_ldexp_long.start.annobin_FLOAT_ldexp_long.end.annobin_DOUBLE_add.start.annobin_DOUBLE_add.end.annobin_DOUBLE_subtract.start.annobin_DOUBLE_subtract.end.annobin_DOUBLE_multiply.start.annobin_DOUBLE_multiply.end.annobin_DOUBLE_divide.start.annobin_DOUBLE_divide.end.annobin_DOUBLE_equal.start.annobin_DOUBLE_equal.end.annobin_DOUBLE_not_equal.start.annobin_DOUBLE_not_equal.end.annobin_DOUBLE_less.start.annobin_DOUBLE_less.end.annobin_DOUBLE_less_equal.start.annobin_DOUBLE_less_equal.end.annobin_DOUBLE_greater.start.annobin_DOUBLE_greater.end.annobin_DOUBLE_greater_equal.start.annobin_DOUBLE_greater_equal.end.annobin_DOUBLE_logical_and.start.annobin_DOUBLE_logical_and.end.annobin_DOUBLE_logical_or.start.annobin_DOUBLE_logical_or.end.annobin_DOUBLE_logical_xor.start.annobin_DOUBLE_logical_xor.end.annobin_DOUBLE_logical_not.start.annobin_DOUBLE_logical_not.end.annobin_DOUBLE_isnan.start.annobin_DOUBLE_isnan.end.annobin_DOUBLE_isinf.start.annobin_DOUBLE_isinf.end.annobin_DOUBLE_isfinite.start.annobin_DOUBLE_isfinite.end.annobin_DOUBLE_signbit.start.annobin_DOUBLE_signbit.end.annobin_DOUBLE_spacing.start.annobin_DOUBLE_spacing.end.annobin_DOUBLE_copysign.start.annobin_DOUBLE_copysign.end.annobin_DOUBLE_nextafter.start.annobin_DOUBLE_nextafter.end.annobin_DOUBLE_maximum.start.annobin_DOUBLE_maximum.end.annobin_DOUBLE_minimum.start.annobin_DOUBLE_minimum.end.annobin_DOUBLE_fmax.start.annobin_DOUBLE_fmax.end.annobin_DOUBLE_fmin.start.annobin_DOUBLE_fmin.end.annobin_DOUBLE_floor_divide.start.annobin_DOUBLE_floor_divide.end.annobin_DOUBLE_remainder.start.annobin_DOUBLE_remainder.end.annobin_DOUBLE_divmod.start.annobin_DOUBLE_divmod.end.annobin_DOUBLE_square.start.annobin_DOUBLE_square.end.annobin_DOUBLE_reciprocal.start.annobin_DOUBLE_reciprocal.end.annobin_DOUBLE__ones_like.start.annobin_DOUBLE__ones_like.end.annobin_DOUBLE_conjugate.start.annobin_DOUBLE_conjugate.end.annobin_DOUBLE_absolute.start.annobin_DOUBLE_absolute.end.annobin_DOUBLE_negative.start.annobin_DOUBLE_negative.end.annobin_DOUBLE_positive.start.annobin_DOUBLE_positive.end.annobin_DOUBLE_sign.start.annobin_DOUBLE_sign.end.annobin_DOUBLE_modf.start.annobin_DOUBLE_modf.end.annobin_DOUBLE_frexp.start.annobin_DOUBLE_frexp.end.annobin_DOUBLE_ldexp.start.annobin_DOUBLE_ldexp.end.annobin_DOUBLE_ldexp_long.start.annobin_DOUBLE_ldexp_long.end.annobin_LONGDOUBLE_add.start.annobin_LONGDOUBLE_add.end.annobin_LONGDOUBLE_subtract.start.annobin_LONGDOUBLE_subtract.end.annobin_LONGDOUBLE_multiply.start.annobin_LONGDOUBLE_multiply.end.annobin_LONGDOUBLE_divide.start.annobin_LONGDOUBLE_divide.end.annobin_LONGDOUBLE_equal.start.annobin_LONGDOUBLE_equal.end.annobin_LONGDOUBLE_not_equal.start.annobin_LONGDOUBLE_not_equal.end.annobin_LONGDOUBLE_less.start.annobin_LONGDOUBLE_less.end.annobin_LONGDOUBLE_less_equal.start.annobin_LONGDOUBLE_less_equal.end.annobin_LONGDOUBLE_greater.start.annobin_LONGDOUBLE_greater.end.annobin_LONGDOUBLE_greater_equal.start.annobin_LONGDOUBLE_greater_equal.end.annobin_LONGDOUBLE_logical_and.start.annobin_LONGDOUBLE_logical_and.end.annobin_LONGDOUBLE_logical_or.start.annobin_LONGDOUBLE_logical_or.end.annobin_LONGDOUBLE_logical_xor.start.annobin_LONGDOUBLE_logical_xor.end.annobin_LONGDOUBLE_logical_not.start.annobin_LONGDOUBLE_logical_not.end.annobin_LONGDOUBLE_isnan.start.annobin_LONGDOUBLE_isnan.end.annobin_LONGDOUBLE_isinf.start.annobin_LONGDOUBLE_isinf.end.annobin_LONGDOUBLE_isfinite.start.annobin_LONGDOUBLE_isfinite.end.annobin_LONGDOUBLE_signbit.start.annobin_LONGDOUBLE_signbit.end.annobin_LONGDOUBLE_spacing.start.annobin_LONGDOUBLE_spacing.end.annobin_LONGDOUBLE_copysign.start.annobin_LONGDOUBLE_copysign.end.annobin_LONGDOUBLE_nextafter.start.annobin_LONGDOUBLE_nextafter.end.annobin_LONGDOUBLE_maximum.start.annobin_LONGDOUBLE_maximum.end.annobin_LONGDOUBLE_minimum.start.annobin_LONGDOUBLE_minimum.end.annobin_LONGDOUBLE_fmax.start.annobin_LONGDOUBLE_fmax.end.annobin_LONGDOUBLE_fmin.start.annobin_LONGDOUBLE_fmin.end.annobin_LONGDOUBLE_floor_divide.start.annobin_LONGDOUBLE_floor_divide.end.annobin_LONGDOUBLE_remainder.start.annobin_LONGDOUBLE_remainder.end.annobin_LONGDOUBLE_divmod.start.annobin_LONGDOUBLE_divmod.end.annobin_LONGDOUBLE_square.start.annobin_LONGDOUBLE_square.end.annobin_LONGDOUBLE_reciprocal.start.annobin_LONGDOUBLE_reciprocal.end.annobin_LONGDOUBLE__ones_like.start.annobin_LONGDOUBLE__ones_like.end.annobin_LONGDOUBLE_conjugate.start.annobin_LONGDOUBLE_conjugate.end.annobin_LONGDOUBLE_absolute.start.annobin_LONGDOUBLE_absolute.end.annobin_LONGDOUBLE_negative.start.annobin_LONGDOUBLE_negative.end.annobin_LONGDOUBLE_positive.start.annobin_LONGDOUBLE_positive.end.annobin_LONGDOUBLE_sign.start.annobin_LONGDOUBLE_sign.end.annobin_LONGDOUBLE_modf.start.annobin_LONGDOUBLE_modf.end.annobin_LONGDOUBLE_frexp.start.annobin_LONGDOUBLE_frexp.end.annobin_LONGDOUBLE_ldexp.start.annobin_LONGDOUBLE_ldexp.end.annobin_LONGDOUBLE_ldexp_long.start.annobin_LONGDOUBLE_ldexp_long.end.annobin_HALF_add.start.annobin_HALF_add.end.annobin_HALF_subtract.start.annobin_HALF_subtract.end.annobin_HALF_multiply.start.annobin_HALF_multiply.end.annobin_HALF_divide.start.annobin_HALF_divide.end.annobin_HALF_equal.start.annobin_HALF_equal.end.annobin_HALF_not_equal.start.annobin_HALF_not_equal.end.annobin_HALF_less.start.annobin_HALF_less.end.annobin_HALF_less_equal.start.annobin_HALF_less_equal.end.annobin_HALF_greater.start.annobin_HALF_greater.end.annobin_HALF_greater_equal.start.annobin_HALF_greater_equal.end.annobin_HALF_logical_and.start.annobin_HALF_logical_and.end.annobin_HALF_logical_or.start.annobin_HALF_logical_or.end.annobin_HALF_logical_xor.start.annobin_HALF_logical_xor.end.annobin_HALF_logical_not.start.annobin_HALF_logical_not.end.annobin_HALF_isnan.start.annobin_HALF_isnan.end.annobin_HALF_isinf.start.annobin_HALF_isinf.end.annobin_HALF_isfinite.start.annobin_HALF_isfinite.end.annobin_HALF_signbit.start.annobin_HALF_signbit.end.annobin_HALF_spacing.start.annobin_HALF_spacing.end.annobin_HALF_copysign.start.annobin_HALF_copysign.end.annobin_HALF_nextafter.start.annobin_HALF_nextafter.end.annobin_HALF_maximum.start.annobin_HALF_maximum.end.annobin_HALF_minimum.start.annobin_HALF_minimum.end.annobin_HALF_fmax.start.annobin_HALF_fmax.end.annobin_HALF_fmin.start.annobin_HALF_fmin.end.annobin_HALF_floor_divide.start.annobin_HALF_floor_divide.end.annobin_HALF_remainder.start.annobin_HALF_remainder.end.annobin_HALF_divmod.start.annobin_HALF_divmod.end.annobin_HALF_square.start.annobin_HALF_square.end.annobin_HALF_reciprocal.start.annobin_HALF_reciprocal.end.annobin_HALF__ones_like.start.annobin_HALF__ones_like.end.annobin_HALF_conjugate.start.annobin_HALF_conjugate.end.annobin_HALF_absolute.start.annobin_HALF_absolute.end.annobin_HALF_negative.start.annobin_HALF_negative.end.annobin_HALF_positive.start.annobin_HALF_positive.end.annobin_HALF_sign.start.annobin_HALF_sign.end.annobin_HALF_modf.start.annobin_HALF_modf.end.annobin_HALF_frexp.start.annobin_HALF_frexp.end.annobin_HALF_ldexp.start.annobin_HALF_ldexp.end.annobin_HALF_ldexp_long.start.annobin_HALF_ldexp_long.end.annobin_CFLOAT_add.start.annobin_CFLOAT_add.end.annobin_CFLOAT_subtract.start.annobin_CFLOAT_subtract.end.annobin_CFLOAT_multiply.start.annobin_CFLOAT_multiply.end.annobin_CFLOAT_divide.start.annobin_CFLOAT_divide.end.annobin_CFLOAT_floor_divide.start.annobin_CFLOAT_floor_divide.end.annobin_CFLOAT_greater.start.annobin_CFLOAT_greater.end.annobin_CFLOAT_greater_equal.start.annobin_CFLOAT_greater_equal.end.annobin_CFLOAT_less.start.annobin_CFLOAT_less.end.annobin_CFLOAT_less_equal.start.annobin_CFLOAT_less_equal.end.annobin_CFLOAT_equal.start.annobin_CFLOAT_equal.end.annobin_CFLOAT_not_equal.start.annobin_CFLOAT_not_equal.end.annobin_CFLOAT_logical_and.start.annobin_CFLOAT_logical_and.end.annobin_CFLOAT_logical_or.start.annobin_CFLOAT_logical_or.end.annobin_CFLOAT_logical_xor.start.annobin_CFLOAT_logical_xor.end.annobin_CFLOAT_logical_not.start.annobin_CFLOAT_logical_not.end.annobin_CFLOAT_isnan.start.annobin_CFLOAT_isnan.end.annobin_CFLOAT_isinf.start.annobin_CFLOAT_isinf.end.annobin_CFLOAT_isfinite.start.annobin_CFLOAT_isfinite.end.annobin_CFLOAT_square.start.annobin_CFLOAT_square.end.annobin_CFLOAT_reciprocal.start.annobin_CFLOAT_reciprocal.end.annobin_CFLOAT__ones_like.start.annobin_CFLOAT__ones_like.end.annobin_CFLOAT_conjugate.start.annobin_CFLOAT_conjugate.end.annobin_CFLOAT_absolute.start.annobin_CFLOAT_absolute.end.annobin_CFLOAT__arg.start.annobin_CFLOAT__arg.end.annobin_CFLOAT_sign.start.annobin_CFLOAT_sign.end.annobin_CFLOAT_maximum.start.annobin_CFLOAT_maximum.end.annobin_CFLOAT_minimum.start.annobin_CFLOAT_minimum.end.annobin_CFLOAT_fmax.start.annobin_CFLOAT_fmax.end.annobin_CFLOAT_fmin.start.annobin_CFLOAT_fmin.end.annobin_CDOUBLE_add.start.annobin_CDOUBLE_add.end.annobin_CDOUBLE_subtract.start.annobin_CDOUBLE_subtract.end.annobin_CDOUBLE_multiply.start.annobin_CDOUBLE_multiply.end.annobin_CDOUBLE_divide.start.annobin_CDOUBLE_divide.end.annobin_CDOUBLE_floor_divide.start.annobin_CDOUBLE_floor_divide.end.annobin_CDOUBLE_greater.start.annobin_CDOUBLE_greater.end.annobin_CDOUBLE_greater_equal.start.annobin_CDOUBLE_greater_equal.end.annobin_CDOUBLE_less.start.annobin_CDOUBLE_less.end.annobin_CDOUBLE_less_equal.start.annobin_CDOUBLE_less_equal.end.annobin_CDOUBLE_equal.start.annobin_CDOUBLE_equal.end.annobin_CDOUBLE_not_equal.start.annobin_CDOUBLE_not_equal.end.annobin_CDOUBLE_logical_and.start.annobin_CDOUBLE_logical_and.end.annobin_CDOUBLE_logical_or.start.annobin_CDOUBLE_logical_or.end.annobin_CDOUBLE_logical_xor.start.annobin_CDOUBLE_logical_xor.end.annobin_CDOUBLE_logical_not.start.annobin_CDOUBLE_logical_not.end.annobin_CDOUBLE_isnan.start.annobin_CDOUBLE_isnan.end.annobin_CDOUBLE_isinf.start.annobin_CDOUBLE_isinf.end.annobin_CDOUBLE_isfinite.start.annobin_CDOUBLE_isfinite.end.annobin_CDOUBLE_square.start.annobin_CDOUBLE_square.end.annobin_CDOUBLE_reciprocal.start.annobin_CDOUBLE_reciprocal.end.annobin_CDOUBLE__ones_like.start.annobin_CDOUBLE__ones_like.end.annobin_CDOUBLE_conjugate.start.annobin_CDOUBLE_conjugate.end.annobin_CDOUBLE_absolute.start.annobin_CDOUBLE_absolute.end.annobin_CDOUBLE__arg.start.annobin_CDOUBLE__arg.end.annobin_CDOUBLE_sign.start.annobin_CDOUBLE_sign.end.annobin_CDOUBLE_maximum.start.annobin_CDOUBLE_maximum.end.annobin_CDOUBLE_minimum.start.annobin_CDOUBLE_minimum.end.annobin_CDOUBLE_fmax.start.annobin_CDOUBLE_fmax.end.annobin_CDOUBLE_fmin.start.annobin_CDOUBLE_fmin.end.annobin_CLONGDOUBLE_add.start.annobin_CLONGDOUBLE_add.end.annobin_CLONGDOUBLE_subtract.start.annobin_CLONGDOUBLE_subtract.end.annobin_CLONGDOUBLE_multiply.start.annobin_CLONGDOUBLE_multiply.end.annobin_CLONGDOUBLE_divide.start.annobin_CLONGDOUBLE_divide.end.annobin_CLONGDOUBLE_floor_divide.start.annobin_CLONGDOUBLE_floor_divide.end.annobin_CLONGDOUBLE_greater.start.annobin_CLONGDOUBLE_greater.end.annobin_CLONGDOUBLE_greater_equal.start.annobin_CLONGDOUBLE_greater_equal.end.annobin_CLONGDOUBLE_less.start.annobin_CLONGDOUBLE_less.end.annobin_CLONGDOUBLE_less_equal.start.annobin_CLONGDOUBLE_less_equal.end.annobin_CLONGDOUBLE_equal.start.annobin_CLONGDOUBLE_equal.end.annobin_CLONGDOUBLE_not_equal.start.annobin_CLONGDOUBLE_not_equal.end.annobin_CLONGDOUBLE_logical_and.start.annobin_CLONGDOUBLE_logical_and.end.annobin_CLONGDOUBLE_logical_or.start.annobin_CLONGDOUBLE_logical_or.end.annobin_CLONGDOUBLE_logical_xor.start.annobin_CLONGDOUBLE_logical_xor.end.annobin_CLONGDOUBLE_logical_not.start.annobin_CLONGDOUBLE_logical_not.end.annobin_CLONGDOUBLE_isnan.start.annobin_CLONGDOUBLE_isnan.end.annobin_CLONGDOUBLE_isinf.start.annobin_CLONGDOUBLE_isinf.end.annobin_CLONGDOUBLE_isfinite.start.annobin_CLONGDOUBLE_isfinite.end.annobin_CLONGDOUBLE_square.start.annobin_CLONGDOUBLE_square.end.annobin_CLONGDOUBLE_reciprocal.start.annobin_CLONGDOUBLE_reciprocal.end.annobin_CLONGDOUBLE__ones_like.start.annobin_CLONGDOUBLE__ones_like.end.annobin_CLONGDOUBLE_conjugate.start.annobin_CLONGDOUBLE_conjugate.end.annobin_CLONGDOUBLE_absolute.start.annobin_CLONGDOUBLE_absolute.end.annobin_CLONGDOUBLE__arg.start.annobin_CLONGDOUBLE__arg.end.annobin_CLONGDOUBLE_sign.start.annobin_CLONGDOUBLE_sign.end.annobin_CLONGDOUBLE_maximum.start.annobin_CLONGDOUBLE_maximum.end.annobin_CLONGDOUBLE_minimum.start.annobin_CLONGDOUBLE_minimum.end.annobin_CLONGDOUBLE_fmax.start.annobin_CLONGDOUBLE_fmax.end.annobin_CLONGDOUBLE_fmin.start.annobin_CLONGDOUBLE_fmin.end.annobin_OBJECT_equal.start.annobin_OBJECT_equal.end.annobin_OBJECT_not_equal.start.annobin_OBJECT_not_equal.end.annobin_OBJECT_greater.start.annobin_OBJECT_greater.end.annobin_OBJECT_greater_equal.start.annobin_OBJECT_greater_equal.end.annobin_OBJECT_less.start.annobin_OBJECT_less.end.annobin_OBJECT_less_equal.start.annobin_OBJECT_less_equal.end.annobin_OBJECT_sign.start.annobin_OBJECT_sign.end.annobin_ufunc_object.c.annobin_ufunc_object.c_end.annobin_ufunc_object.c.hot.annobin_ufunc_object.c_end.hot.annobin_ufunc_object.c.unlikely.annobin_ufunc_object.c_end.unlikely.annobin_ufunc_object.c.startup.annobin_ufunc_object.c_end.startup.annobin_ufunc_object.c.exit.annobin_ufunc_object.c_end.exit.annobin_assign_reduce_identity_zero.start.annobin_assign_reduce_identity_zero.endassign_reduce_identity_zero.annobin_assign_reduce_identity_one.start.annobin_assign_reduce_identity_one.endassign_reduce_identity_one.annobin_PyUFunc_SetUsesArraysAsData.start.annobin_PyUFunc_SetUsesArraysAsData.end.annobin_cmp_arg_types.start.annobin_cmp_arg_types.endcmp_arg_types.annobin__typecharfromnum.start.annobin__typecharfromnum.end_typecharfromnum.annobin_assign_reduce_identity_minusone.start.annobin_assign_reduce_identity_minusone.endassign_reduce_identity_minusoneMinusOne.19706.annobin_ufunc_get_ntypes.start.annobin_ufunc_get_ntypes.endufunc_get_ntypes.annobin_ufunc_get_nargs.start.annobin_ufunc_get_nargs.endufunc_get_nargs.annobin_ufunc_get_nout.start.annobin_ufunc_get_nout.endufunc_get_nout.annobin_ufunc_get_nin.start.annobin_ufunc_get_nin.endufunc_get_nin.annobin_ufunc_get_name.start.annobin_ufunc_get_name.endufunc_get_name.annobin__error_handler.start.annobin__error_handler.end_error_handler.annobin__extract_pyvals.start.annobin__extract_pyvals.end_extract_pyvals.annobin_trivial_two_operand_loop.start.annobin_trivial_two_operand_loop.endtrivial_two_operand_loop.annobin_trivial_three_operand_loop.start.annobin_trivial_three_operand_loop.endtrivial_three_operand_loop.annobin_reduce_loop.start.annobin_reduce_loop.endreduce_loop.annobin_ufunc_dealloc.start.annobin_ufunc_dealloc.endufunc_dealloc.annobin_get_binary_op_function.start.annobin_get_binary_op_function.endget_binary_op_function.annobin__loop1d_list_free.start.annobin__loop1d_list_free.end_loop1d_list_free.annobin_make_arr_prep_args.start.annobin_make_arr_prep_args.endmake_arr_prep_args.annobin_ufunc_get_types.start.annobin_ufunc_get_types.endufunc_get_types.annobin_ufunc_repr.start.annobin_ufunc_repr.endufunc_repr.annobin_ufunc_get_identity.start.annobin_ufunc_get_identity.endufunc_get_identity.annobin_ufunc_get_signature.start.annobin_ufunc_get_signature.endufunc_get_signature.annobin_get_global_ext_obj.part.6.start.annobin_get_global_ext_obj.part.6.endget_global_ext_obj.part.6.annobin__get_bufsize_errmask.start.annobin__get_bufsize_errmask.end_get_bufsize_errmaskPyUFunc_NUM_NODEFAULTS.annobin_ufunc_at.start.annobin_ufunc_at.endufunc_at.annobin__set_out_array.start.annobin__set_out_array.end_set_out_array.annobin_get_ufunc_arguments.start.annobin_get_ufunc_arguments.endget_ufunc_arguments.annobin__get_out_wrap.start.annobin__get_out_wrap.end_get_out_wrap.annobin_prepare_ufunc_output.part.9.start.annobin_prepare_ufunc_output.part.9.endprepare_ufunc_output.part.9.annobin__find_array_prepare.constprop.16.start.annobin__find_array_prepare.constprop.16.end_find_array_prepare.constprop.16.annobin_ufunc_get_doc.start.annobin_ufunc_get_doc.endufunc_get_doc_sig_formatter.20607.annobin__is_alnum_underscore.start.annobin__is_alnum_underscore.end_is_alnum_underscore.annobin_PyUFunc_GenericReduction.start.annobin_PyUFunc_GenericReduction.endPyUFunc_GenericReductionreduce_kwlist.20037reduceat_kwlist.20039_reduce_type.20040accumulate_kwlist.20038AxisError_cls.18290.annobin_ufunc_reduceat.start.annobin_ufunc_reduceat.endufunc_reduceat.annobin_ufunc_accumulate.start.annobin_ufunc_accumulate.endufunc_accumulate.annobin_ufunc_reduce.start.annobin_ufunc_reduce.endufunc_reduce.annobin_PyUFunc_getfperr.start.annobin_PyUFunc_getfperr.end.annobin_PyUFunc_handlefperr.start.annobin_PyUFunc_handlefperr.end.annobin__check_ufunc_fperr.start.annobin__check_ufunc_fperr.end_check_ufunc_fperr.annobin_PyUFunc_GeneralizedFunction.start.annobin_PyUFunc_GeneralizedFunction.endPyUFunc_GeneralizedFunction.annobin_PyUFunc_checkfperr.start.annobin_PyUFunc_checkfperr.end.annobin_PyUFunc_clearfperr.start.annobin_PyUFunc_clearfperr.end.annobin_PyUFunc_GetPyValues.start.annobin_PyUFunc_GetPyValues.end.annobin_PyUFunc_GenericFunction.start.annobin_PyUFunc_GenericFunction.end.annobin_ufunc_generic_call.start.annobin_ufunc_generic_call.endufunc_generic_call.annobin_ufunc_outer.start.annobin_ufunc_outer.endufunc_outer.annobin_ufunc_geterr.start.annobin_ufunc_geterr.end.annobin_ufunc_seterr.start.annobin_ufunc_seterr.end.annobin_PyUFunc_ReplaceLoopBySignature.start.annobin_PyUFunc_ReplaceLoopBySignature.end.annobin_PyUFunc_FromFuncAndDataAndSignature.start.annobin_PyUFunc_FromFuncAndDataAndSignature.end.annobin_PyUFunc_FromFuncAndData.start.annobin_PyUFunc_FromFuncAndData.end.annobin_PyUFunc_RegisterLoopForType.start.annobin_PyUFunc_RegisterLoopForType.end.annobin_PyUFunc_RegisterLoopForDescr.start.annobin_PyUFunc_RegisterLoopForDescr.endufunc_methodsufunc_getset.annobin_scalarmath.c.annobin_scalarmath.c_end.annobin_scalarmath.c.hot.annobin_scalarmath.c_end.hot.annobin_scalarmath.c.unlikely.annobin_scalarmath.c_end.unlikely.annobin_scalarmath.c.startup.annobin_scalarmath.c_end.startup.annobin_scalarmath.c.exit.annobin_scalarmath.c_end.exit.annobin_longdouble_float.start.annobin_longdouble_float.end.annobin_double_float.start.annobin_double_float.end.annobin_float_float.start.annobin_float_float.end.annobin_ulonglong_float.start.annobin_ulonglong_float.endulonglong_float.annobin_longlong_float.start.annobin_longlong_float.end.annobin_ulong_float.start.annobin_ulong_float.endulong_float.annobin_long_float.start.annobin_long_float.end.annobin_uint_float.start.annobin_uint_float.enduint_float.annobin_int_float.start.annobin_int_float.end.annobin_ushort_float.start.annobin_ushort_float.endushort_float.annobin_short_float.start.annobin_short_float.end.annobin_ubyte_float.start.annobin_ubyte_float.endubyte_float.annobin_byte_float.start.annobin_byte_float.end.annobin_emit_complexwarning.start.annobin_emit_complexwarning.endemit_complexwarningcls.23802.annobin_clongdouble_float.start.annobin_clongdouble_float.endclongdouble_float.annobin_cdouble_float.start.annobin_cdouble_float.endcdouble_float.annobin_cfloat_float.start.annobin_cfloat_float.endcfloat_float.annobin_long_int.start.annobin_long_int.end.annobin_int_int.start.annobin_int_int.end.annobin_short_int.start.annobin_short_int.end.annobin_byte_int.start.annobin_byte_int.end.annobin_uint_int.start.annobin_uint_int.enduint_int.annobin_ushort_int.start.annobin_ushort_int.endushort_int.annobin_ubyte_int.start.annobin_ubyte_int.endubyte_int.annobin_clongdouble_int.start.annobin_clongdouble_int.endclongdouble_int.annobin_cdouble_int.start.annobin_cdouble_int.endcdouble_int.annobin_cfloat_int.start.annobin_cfloat_int.endcfloat_int.annobin_longdouble_int.start.annobin_longdouble_int.end.annobin_double_int.start.annobin_double_int.end.annobin_float_int.start.annobin_float_int.end.annobin_half_float.start.annobin_half_float.endhalf_float.annobin_half_int.start.annobin_half_int.endhalf_int.annobin_ulonglong_int.start.annobin_ulonglong_int.endulonglong_int.annobin_longlong_int.start.annobin_longlong_int.end.annobin_ulong_int.start.annobin_ulong_int.endulong_int.annobin__clongdouble_convert_to_ctype.start.annobin__clongdouble_convert_to_ctype.end_clongdouble_convert_to_ctype.annobin__clongdouble_convert2_to_ctypes.part.7.start.annobin__clongdouble_convert2_to_ctypes.part.7.end_clongdouble_convert2_to_ctypes.part.7.annobin_clongdouble_bool.start.annobin_clongdouble_bool.endclongdouble_bool.annobin_clongdouble_absolute.start.annobin_clongdouble_absolute.endclongdouble_absolute_basic_longdouble_sqrt.annobin_clongdouble_positive.start.annobin_clongdouble_positive.endclongdouble_positive.annobin_clongdouble_negative.start.annobin_clongdouble_negative.endclongdouble_negative.annobin__cdouble_convert_to_ctype.start.annobin__cdouble_convert_to_ctype.end_cdouble_convert_to_ctype.annobin__cdouble_convert2_to_ctypes.part.13.start.annobin__cdouble_convert2_to_ctypes.part.13.end_cdouble_convert2_to_ctypes.part.13.annobin_cdouble_bool.start.annobin_cdouble_bool.endcdouble_bool.annobin_cdouble_absolute.start.annobin_cdouble_absolute.endcdouble_absolute_basic_double_sqrt.annobin_cdouble_positive.start.annobin_cdouble_positive.endcdouble_positive.annobin_cdouble_negative.start.annobin_cdouble_negative.endcdouble_negative.annobin__cfloat_convert_to_ctype.start.annobin__cfloat_convert_to_ctype.end_cfloat_convert_to_ctype.annobin__cfloat_convert2_to_ctypes.part.19.start.annobin__cfloat_convert2_to_ctypes.part.19.end_cfloat_convert2_to_ctypes.part.19.annobin_cfloat_bool.start.annobin_cfloat_bool.endcfloat_bool.annobin_cfloat_absolute.start.annobin_cfloat_absolute.endcfloat_absolute_basic_float_sqrt.annobin_cfloat_positive.start.annobin_cfloat_positive.endcfloat_positive.annobin_cfloat_negative.start.annobin_cfloat_negative.endcfloat_negative.annobin__longdouble_convert_to_ctype.start.annobin__longdouble_convert_to_ctype.end_longdouble_convert_to_ctype.annobin__longdouble_convert2_to_ctypes.part.25.start.annobin__longdouble_convert2_to_ctypes.part.25.end_longdouble_convert2_to_ctypes.part.25.annobin_longdouble_bool.start.annobin_longdouble_bool.end.annobin_longdouble_absolute.start.annobin_longdouble_absolute.end.annobin_longdouble_positive.start.annobin_longdouble_positive.end.annobin_longdouble_negative.start.annobin_longdouble_negative.end.annobin__double_convert_to_ctype.start.annobin__double_convert_to_ctype.end_double_convert_to_ctype.annobin__double_convert2_to_ctypes.part.31.start.annobin__double_convert2_to_ctypes.part.31.end_double_convert2_to_ctypes.part.31.annobin_double_bool.start.annobin_double_bool.end.annobin_double_absolute.start.annobin_double_absolute.end.annobin_double_positive.start.annobin_double_positive.end.annobin_double_negative.start.annobin_double_negative.end.annobin__float_convert_to_ctype.start.annobin__float_convert_to_ctype.end_float_convert_to_ctype.annobin__float_convert2_to_ctypes.part.37.start.annobin__float_convert2_to_ctypes.part.37.end_float_convert2_to_ctypes.part.37.annobin_float_bool.start.annobin_float_bool.end.annobin_float_absolute.start.annobin_float_absolute.end.annobin_float_positive.start.annobin_float_positive.end.annobin_float_negative.start.annobin_float_negative.end.annobin__half_convert_to_ctype.start.annobin__half_convert_to_ctype.end_half_convert_to_ctype.annobin__half_convert2_to_ctypes.part.43.start.annobin__half_convert2_to_ctypes.part.43.end_half_convert2_to_ctypes.part.43.annobin_half_absolute.start.annobin_half_absolute.endhalf_absolute.annobin_half_positive.start.annobin_half_positive.endhalf_positive.annobin__ulonglong_convert_to_ctype.start.annobin__ulonglong_convert_to_ctype.end_ulonglong_convert_to_ctype.annobin__ulonglong_convert2_to_ctypes.part.48.start.annobin__ulonglong_convert2_to_ctypes.part.48.end_ulonglong_convert2_to_ctypes.part.48.annobin_ulonglong_invert.start.annobin_ulonglong_invert.endulonglong_invert.annobin_ulonglong_bool.start.annobin_ulonglong_bool.endulonglong_bool.annobin_ulonglong_absolute.start.annobin_ulonglong_absolute.endulonglong_absolute.annobin_ulonglong_positive.start.annobin_ulonglong_positive.endulonglong_positive.annobin__longlong_convert_to_ctype.start.annobin__longlong_convert_to_ctype.end_longlong_convert_to_ctype.annobin__longlong_convert2_to_ctypes.part.54.start.annobin__longlong_convert2_to_ctypes.part.54.end_longlong_convert2_to_ctypes.part.54.annobin_longlong_invert.start.annobin_longlong_invert.end.annobin_longlong_bool.start.annobin_longlong_bool.end.annobin_longlong_absolute.start.annobin_longlong_absolute.end.annobin_longlong_positive.start.annobin_longlong_positive.end.annobin_longlong_negative.start.annobin_longlong_negative.end.annobin__ulong_convert_to_ctype.start.annobin__ulong_convert_to_ctype.end_ulong_convert_to_ctype.annobin__ulong_convert2_to_ctypes.part.61.start.annobin__ulong_convert2_to_ctypes.part.61.end_ulong_convert2_to_ctypes.part.61.annobin_ulong_invert.start.annobin_ulong_invert.endulong_invert.annobin_ulong_bool.start.annobin_ulong_bool.endulong_bool.annobin_ulong_absolute.start.annobin_ulong_absolute.endulong_absolute.annobin_ulong_positive.start.annobin_ulong_positive.endulong_positive.annobin__long_convert_to_ctype.start.annobin__long_convert_to_ctype.end_long_convert_to_ctype.annobin__long_convert2_to_ctypes.part.67.start.annobin__long_convert2_to_ctypes.part.67.end_long_convert2_to_ctypes.part.67.annobin_long_invert.start.annobin_long_invert.end.annobin_long_bool.start.annobin_long_bool.end.annobin_long_absolute.start.annobin_long_absolute.end.annobin_long_positive.start.annobin_long_positive.end.annobin_long_negative.start.annobin_long_negative.end.annobin__uint_convert_to_ctype.start.annobin__uint_convert_to_ctype.end_uint_convert_to_ctype.annobin__uint_convert2_to_ctypes.part.74.start.annobin__uint_convert2_to_ctypes.part.74.end_uint_convert2_to_ctypes.part.74.annobin_uint_invert.start.annobin_uint_invert.enduint_invert.annobin_uint_bool.start.annobin_uint_bool.enduint_bool.annobin_uint_absolute.start.annobin_uint_absolute.enduint_absolute.annobin_uint_positive.start.annobin_uint_positive.enduint_positive.annobin__int_convert_to_ctype.start.annobin__int_convert_to_ctype.end_int_convert_to_ctype.annobin__int_convert2_to_ctypes.part.80.start.annobin__int_convert2_to_ctypes.part.80.end_int_convert2_to_ctypes.part.80.annobin_int_invert.start.annobin_int_invert.end.annobin_int_bool.start.annobin_int_bool.end.annobin_int_absolute.start.annobin_int_absolute.end.annobin_int_positive.start.annobin_int_positive.end.annobin_int_negative.start.annobin_int_negative.end.annobin__ushort_convert_to_ctype.start.annobin__ushort_convert_to_ctype.end_ushort_convert_to_ctype.annobin_ushort_negative.start.annobin_ushort_negative.endushort_negative.annobin__ushort_convert2_to_ctypes.part.87.start.annobin__ushort_convert2_to_ctypes.part.87.end_ushort_convert2_to_ctypes.part.87.annobin_ushort_invert.start.annobin_ushort_invert.endushort_invert.annobin_ushort_bool.start.annobin_ushort_bool.endushort_bool.annobin__short_convert_to_ctype.start.annobin__short_convert_to_ctype.end_short_convert_to_ctype.annobin__short_convert2_to_ctypes.part.93.start.annobin__short_convert2_to_ctypes.part.93.end_short_convert2_to_ctypes.part.93.annobin_short_invert.start.annobin_short_invert.end.annobin_short_bool.start.annobin_short_bool.end.annobin_short_absolute.start.annobin_short_absolute.end.annobin_short_positive.start.annobin_short_positive.end.annobin_short_negative.start.annobin_short_negative.end.annobin__ubyte_convert_to_ctype.start.annobin__ubyte_convert_to_ctype.end_ubyte_convert_to_ctype.annobin__ubyte_convert2_to_ctypes.part.100.start.annobin__ubyte_convert2_to_ctypes.part.100.end_ubyte_convert2_to_ctypes.part.100.annobin_ubyte_invert.start.annobin_ubyte_invert.endubyte_invert.annobin_ubyte_bool.start.annobin_ubyte_bool.endubyte_bool.annobin_ubyte_absolute.start.annobin_ubyte_absolute.endubyte_absolute.annobin_ubyte_positive.start.annobin_ubyte_positive.endubyte_positive.annobin__byte_convert_to_ctype.start.annobin__byte_convert_to_ctype.end_byte_convert_to_ctype.annobin__byte_convert2_to_ctypes.part.106.start.annobin__byte_convert2_to_ctypes.part.106.end_byte_convert2_to_ctypes.part.106.annobin_byte_invert.start.annobin_byte_invert.end.annobin_byte_bool.start.annobin_byte_bool.end.annobin_byte_absolute.start.annobin_byte_absolute.end.annobin_byte_positive.start.annobin_byte_positive.end.annobin_byte_negative.start.annobin_byte_negative.end.annobin_longlong_ctype_remainder.start.annobin_longlong_ctype_remainder.endlonglong_ctype_remainder.annobin_long_ctype_remainder.start.annobin_long_ctype_remainder.end.annobin_int_ctype_remainder.start.annobin_int_ctype_remainder.endint_ctype_remainder.annobin_short_ctype_remainder.start.annobin_short_ctype_remainder.endshort_ctype_remainder.annobin_byte_ctype_remainder.start.annobin_byte_ctype_remainder.endbyte_ctype_remainder.annobin_ulonglong_negative.start.annobin_ulonglong_negative.endulonglong_negative.annobin_longlong_ctype_divide.start.annobin_longlong_ctype_divide.endlonglong_ctype_divide.annobin_ulong_negative.start.annobin_ulong_negative.endulong_negative.annobin_long_ctype_divide.start.annobin_long_ctype_divide.end.annobin_uint_negative.start.annobin_uint_negative.enduint_negative.annobin_int_ctype_divide.start.annobin_int_ctype_divide.endint_ctype_divide.annobin_ubyte_negative.start.annobin_ubyte_negative.endubyte_negative.annobin_binop_should_defer.constprop.147.start.annobin_binop_should_defer.constprop.147.endbinop_should_defer.constprop.147.annobin_byte_power.start.annobin_byte_power.end.annobin_short_power.start.annobin_short_power.end.annobin_int_power.start.annobin_int_power.end.annobin_long_power.start.annobin_long_power.end.annobin_longlong_power.start.annobin_longlong_power.end.annobin_byte_add.start.annobin_byte_add.end.annobin_byte_subtract.start.annobin_byte_subtract.end.annobin_byte_multiply.start.annobin_byte_multiply.end.annobin_byte_divmod.start.annobin_byte_divmod.end.annobin_ubyte_add.start.annobin_ubyte_add.endubyte_add.annobin_ubyte_subtract.start.annobin_ubyte_subtract.endubyte_subtract.annobin_ubyte_multiply.start.annobin_ubyte_multiply.endubyte_multiply.annobin_short_add.start.annobin_short_add.end.annobin_short_subtract.start.annobin_short_subtract.end.annobin_short_multiply.start.annobin_short_multiply.end.annobin_short_divmod.start.annobin_short_divmod.end.annobin_ushort_add.start.annobin_ushort_add.endushort_add.annobin_ushort_subtract.start.annobin_ushort_subtract.endushort_subtract.annobin_ushort_multiply.start.annobin_ushort_multiply.endushort_multiply.annobin_int_add.start.annobin_int_add.end.annobin_int_subtract.start.annobin_int_subtract.end.annobin_int_multiply.start.annobin_int_multiply.end.annobin_int_divmod.start.annobin_int_divmod.end.annobin_int_floor_divide.start.annobin_int_floor_divide.end.annobin_uint_add.start.annobin_uint_add.enduint_add.annobin_uint_subtract.start.annobin_uint_subtract.enduint_subtract.annobin_uint_multiply.start.annobin_uint_multiply.enduint_multiply.annobin_long_add.start.annobin_long_add.end.annobin_long_subtract.start.annobin_long_subtract.end.annobin_long_multiply.start.annobin_long_multiply.end.annobin_long_divmod.start.annobin_long_divmod.end.annobin_long_floor_divide.start.annobin_long_floor_divide.end.annobin_ulong_add.start.annobin_ulong_add.endulong_add.annobin_ulong_subtract.start.annobin_ulong_subtract.endulong_subtract.annobin_ulong_multiply.start.annobin_ulong_multiply.endulong_multiply.annobin_longlong_add.start.annobin_longlong_add.end.annobin_longlong_subtract.start.annobin_longlong_subtract.end.annobin_longlong_multiply.start.annobin_longlong_multiply.end.annobin_longlong_divmod.start.annobin_longlong_divmod.end.annobin_longlong_floor_divide.start.annobin_longlong_floor_divide.end.annobin_ulonglong_add.start.annobin_ulonglong_add.endulonglong_add.annobin_ulonglong_subtract.start.annobin_ulonglong_subtract.endulonglong_subtract.annobin_ulonglong_multiply.start.annobin_ulonglong_multiply.endulonglong_multiply.annobin_byte_remainder.start.annobin_byte_remainder.end.annobin_ubyte_remainder.start.annobin_ubyte_remainder.endubyte_remainder.annobin_ubyte_divmod.start.annobin_ubyte_divmod.endubyte_divmod.annobin_ubyte_floor_divide.start.annobin_ubyte_floor_divide.endubyte_floor_divide.annobin_short_remainder.start.annobin_short_remainder.end.annobin_ushort_remainder.start.annobin_ushort_remainder.endushort_remainder.annobin_ushort_divmod.start.annobin_ushort_divmod.endushort_divmod.annobin_ushort_floor_divide.start.annobin_ushort_floor_divide.endushort_floor_divide.annobin_int_remainder.start.annobin_int_remainder.end.annobin_uint_remainder.start.annobin_uint_remainder.enduint_remainder.annobin_uint_divmod.start.annobin_uint_divmod.enduint_divmod.annobin_uint_floor_divide.start.annobin_uint_floor_divide.enduint_floor_divide.annobin_long_remainder.start.annobin_long_remainder.end.annobin_ulong_remainder.start.annobin_ulong_remainder.endulong_remainder.annobin_ulong_divmod.start.annobin_ulong_divmod.endulong_divmod.annobin_ulong_floor_divide.start.annobin_ulong_floor_divide.endulong_floor_divide.annobin_longlong_remainder.start.annobin_longlong_remainder.end.annobin_ulonglong_remainder.start.annobin_ulonglong_remainder.endulonglong_remainder.annobin_ulonglong_divmod.start.annobin_ulonglong_divmod.endulonglong_divmod.annobin_ulonglong_floor_divide.start.annobin_ulonglong_floor_divide.endulonglong_floor_divide.annobin_half_power.start.annobin_half_power.endhalf_power_basic_float_pow.annobin_half_remainder.start.annobin_half_remainder.endhalf_remainder.annobin_half_divmod.start.annobin_half_divmod.end.annobin_half_floor_divide.start.annobin_half_floor_divide.endhalf_floor_divide.annobin_half_add.start.annobin_half_add.endhalf_add.annobin_half_subtract.start.annobin_half_subtract.endhalf_subtract.annobin_half_multiply.start.annobin_half_multiply.endhalf_multiply.annobin_half_true_divide.start.annobin_half_true_divide.endhalf_true_divide.annobin_half_richcompare.start.annobin_half_richcompare.endhalf_richcompare.annobin_float_divmod.start.annobin_float_divmod.endfloat_divmod.annobin_double_divmod.start.annobin_double_divmod.end.annobin_longdouble_divmod.start.annobin_longdouble_divmod.endlongdouble_divmod.annobin_byte_true_divide.start.annobin_byte_true_divide.end.annobin_ubyte_power.start.annobin_ubyte_power.endubyte_power.annobin_ubyte_true_divide.start.annobin_ubyte_true_divide.endubyte_true_divide.annobin_short_true_divide.start.annobin_short_true_divide.end.annobin_ushort_power.start.annobin_ushort_power.endushort_power.annobin_ushort_true_divide.start.annobin_ushort_true_divide.endushort_true_divide.annobin_int_true_divide.start.annobin_int_true_divide.end.annobin_uint_power.start.annobin_uint_power.enduint_power.annobin_uint_true_divide.start.annobin_uint_true_divide.enduint_true_divide.annobin_long_true_divide.start.annobin_long_true_divide.end.annobin_ulong_power.start.annobin_ulong_power.endulong_power.annobin_ulong_true_divide.start.annobin_ulong_true_divide.endulong_true_divide.annobin_longlong_true_divide.start.annobin_longlong_true_divide.end.annobin_ulonglong_power.start.annobin_ulonglong_power.endulonglong_power.annobin_ulonglong_true_divide.start.annobin_ulonglong_true_divide.endulonglong_true_divide.annobin_float_add.start.annobin_float_add.end.annobin_float_subtract.start.annobin_float_subtract.end.annobin_float_multiply.start.annobin_float_multiply.end.annobin_float_power.start.annobin_float_power.end.annobin_float_true_divide.start.annobin_float_true_divide.end.annobin_double_add.start.annobin_double_add.end.annobin_double_subtract.start.annobin_double_subtract.end.annobin_double_multiply.start.annobin_double_multiply.end.annobin_double_power.start.annobin_double_power.end_basic_double_pow.annobin_double_true_divide.start.annobin_double_true_divide.end.annobin_longdouble_add.start.annobin_longdouble_add.end.annobin_longdouble_subtract.start.annobin_longdouble_subtract.end.annobin_longdouble_multiply.start.annobin_longdouble_multiply.end.annobin_longdouble_power.start.annobin_longdouble_power.end_basic_longdouble_pow.annobin_longdouble_true_divide.start.annobin_longdouble_true_divide.end.annobin_cfloat_add.start.annobin_cfloat_add.endcfloat_add.annobin_cfloat_subtract.start.annobin_cfloat_subtract.endcfloat_subtract.annobin_cfloat_multiply.start.annobin_cfloat_multiply.endcfloat_multiply.annobin_cfloat_power.start.annobin_cfloat_power.endcfloat_power_basic_cfloat_pow.annobin_cfloat_true_divide.start.annobin_cfloat_true_divide.endcfloat_true_divide.annobin_cdouble_add.start.annobin_cdouble_add.endcdouble_add.annobin_cdouble_subtract.start.annobin_cdouble_subtract.endcdouble_subtract.annobin_cdouble_multiply.start.annobin_cdouble_multiply.endcdouble_multiply.annobin_cdouble_power.start.annobin_cdouble_power.endcdouble_power_basic_cdouble_pow.annobin_cdouble_true_divide.start.annobin_cdouble_true_divide.endcdouble_true_divide.annobin_clongdouble_add.start.annobin_clongdouble_add.endclongdouble_add.annobin_clongdouble_subtract.start.annobin_clongdouble_subtract.endclongdouble_subtract.annobin_clongdouble_multiply.start.annobin_clongdouble_multiply.endclongdouble_multiply.annobin_clongdouble_power.start.annobin_clongdouble_power.endclongdouble_power_basic_clongdouble_pow.annobin_clongdouble_true_divide.start.annobin_clongdouble_true_divide.endclongdouble_true_divide.annobin_byte_lshift.start.annobin_byte_lshift.end.annobin_byte_rshift.start.annobin_byte_rshift.end.annobin_byte_and.start.annobin_byte_and.end.annobin_byte_xor.start.annobin_byte_xor.end.annobin_byte_or.start.annobin_byte_or.end.annobin_byte_richcompare.start.annobin_byte_richcompare.end.annobin_ubyte_lshift.start.annobin_ubyte_lshift.endubyte_lshift.annobin_ubyte_rshift.start.annobin_ubyte_rshift.endubyte_rshift.annobin_ubyte_and.start.annobin_ubyte_and.endubyte_and.annobin_ubyte_xor.start.annobin_ubyte_xor.endubyte_xor.annobin_ubyte_or.start.annobin_ubyte_or.endubyte_or.annobin_ubyte_richcompare.start.annobin_ubyte_richcompare.endubyte_richcompare.annobin_short_lshift.start.annobin_short_lshift.end.annobin_short_rshift.start.annobin_short_rshift.end.annobin_short_and.start.annobin_short_and.end.annobin_short_xor.start.annobin_short_xor.end.annobin_short_or.start.annobin_short_or.end.annobin_short_richcompare.start.annobin_short_richcompare.end.annobin_ushort_lshift.start.annobin_ushort_lshift.endushort_lshift.annobin_ushort_rshift.start.annobin_ushort_rshift.endushort_rshift.annobin_ushort_and.start.annobin_ushort_and.endushort_and.annobin_ushort_xor.start.annobin_ushort_xor.endushort_xor.annobin_ushort_or.start.annobin_ushort_or.endushort_or.annobin_ushort_richcompare.start.annobin_ushort_richcompare.endushort_richcompare.annobin_int_lshift.start.annobin_int_lshift.end.annobin_int_rshift.start.annobin_int_rshift.end.annobin_int_and.start.annobin_int_and.end.annobin_int_xor.start.annobin_int_xor.end.annobin_int_or.start.annobin_int_or.end.annobin_int_richcompare.start.annobin_int_richcompare.end.annobin_uint_lshift.start.annobin_uint_lshift.enduint_lshift.annobin_uint_rshift.start.annobin_uint_rshift.enduint_rshift.annobin_uint_and.start.annobin_uint_and.enduint_and.annobin_uint_xor.start.annobin_uint_xor.enduint_xor.annobin_uint_or.start.annobin_uint_or.enduint_or.annobin_uint_richcompare.start.annobin_uint_richcompare.enduint_richcompare.annobin_long_lshift.start.annobin_long_lshift.end.annobin_long_rshift.start.annobin_long_rshift.end.annobin_long_and.start.annobin_long_and.end.annobin_long_xor.start.annobin_long_xor.end.annobin_long_or.start.annobin_long_or.end.annobin_long_richcompare.start.annobin_long_richcompare.end.annobin_ulong_lshift.start.annobin_ulong_lshift.endulong_lshift.annobin_ulong_rshift.start.annobin_ulong_rshift.endulong_rshift.annobin_ulong_and.start.annobin_ulong_and.endulong_and.annobin_ulong_xor.start.annobin_ulong_xor.endulong_xor.annobin_ulong_or.start.annobin_ulong_or.endulong_or.annobin_ulong_richcompare.start.annobin_ulong_richcompare.endulong_richcompare.annobin_longlong_lshift.start.annobin_longlong_lshift.end.annobin_longlong_rshift.start.annobin_longlong_rshift.end.annobin_longlong_and.start.annobin_longlong_and.end.annobin_longlong_xor.start.annobin_longlong_xor.end.annobin_longlong_or.start.annobin_longlong_or.end.annobin_longlong_richcompare.start.annobin_longlong_richcompare.end.annobin_ulonglong_lshift.start.annobin_ulonglong_lshift.endulonglong_lshift.annobin_ulonglong_rshift.start.annobin_ulonglong_rshift.endulonglong_rshift.annobin_ulonglong_and.start.annobin_ulonglong_and.endulonglong_and.annobin_ulonglong_xor.start.annobin_ulonglong_xor.endulonglong_xor.annobin_ulonglong_or.start.annobin_ulonglong_or.endulonglong_or.annobin_ulonglong_richcompare.start.annobin_ulonglong_richcompare.endulonglong_richcompare.annobin_float_richcompare.start.annobin_float_richcompare.end.annobin_double_richcompare.start.annobin_double_richcompare.end.annobin_longdouble_richcompare.start.annobin_longdouble_richcompare.end.annobin_cfloat_richcompare.start.annobin_cfloat_richcompare.endcfloat_richcompare.annobin_cdouble_richcompare.start.annobin_cdouble_richcompare.endcdouble_richcompare.annobin_clongdouble_richcompare.start.annobin_clongdouble_richcompare.endclongdouble_richcompare.annobin_half_bool.start.annobin_half_bool.endhalf_bool.annobin_ushort_absolute.start.annobin_ushort_absolute.endushort_absolute.annobin_ushort_positive.start.annobin_ushort_positive.endushort_positive.annobin_half_negative.start.annobin_half_negative.endhalf_negative.annobin_byte_floor_divide.start.annobin_byte_floor_divide.end.annobin_short_floor_divide.start.annobin_short_floor_divide.end.annobin_float_floor_divide.start.annobin_float_floor_divide.end.annobin_double_floor_divide.start.annobin_double_floor_divide.end.annobin_longdouble_floor_divide.start.annobin_longdouble_floor_divide.end.annobin_cfloat_floor_divide.start.annobin_cfloat_floor_divide.endcfloat_floor_divide.annobin_cdouble_floor_divide.start.annobin_cdouble_floor_divide.endcdouble_floor_divide.annobin_clongdouble_floor_divide.start.annobin_clongdouble_floor_divide.endclongdouble_floor_divide.annobin_float_remainder.start.annobin_float_remainder.endfloat_remainder.annobin_double_remainder.start.annobin_double_remainder.end.annobin_longdouble_remainder.start.annobin_longdouble_remainder.endlongdouble_remainder.annobin_add_scalarmath.start.annobin_add_scalarmath.endubyte_as_numberushort_as_numberuint_as_numberulong_as_numberulonglong_as_numberhalf_as_numbercfloat_as_numberclongdouble_as_numbercdouble_as_number.annobin_initscalarmath.start.annobin_initscalarmath.end.annobin_ufunc_type_resolution.c.annobin_ufunc_type_resolution.c_end.annobin_ufunc_type_resolution.c.hot.annobin_ufunc_type_resolution.c_end.hot.annobin_ufunc_type_resolution.c.unlikely.annobin_ufunc_type_resolution.c_end.unlikely.annobin_ufunc_type_resolution.c.startup.annobin_ufunc_type_resolution.c_end.startup.annobin_ufunc_type_resolution.c.exit.annobin_ufunc_type_resolution.c_end.exit.annobin_unmasked_ufunc_loop_as_masked.start.annobin_unmasked_ufunc_loop_as_masked.endunmasked_ufunc_loop_as_masked.annobin_ufunc_loop_matches.start.annobin_ufunc_loop_matches.endufunc_loop_matches.annobin_ufunc_masker_data_clone.start.annobin_ufunc_masker_data_clone.endufunc_masker_data_clone.annobin_ensure_dtype_nbo.part.0.start.annobin_ensure_dtype_nbo.part.0.endensure_dtype_nbo.part.0.annobin_set_ufunc_loop_data_types.isra.2.start.annobin_set_ufunc_loop_data_types.isra.2.endset_ufunc_loop_data_types.isra.2.annobin_should_use_min_scalar.part.3.start.annobin_should_use_min_scalar.part.3.endshould_use_min_scalar.part.3CSWTCH.133.annobin_PyUFunc_ValidateCasting.start.annobin_PyUFunc_ValidateCasting.end.annobin_PyUFunc_IsNaTTypeResolver.start.annobin_PyUFunc_IsNaTTypeResolver.end.annobin_PyUFunc_DefaultLegacyInnerLoopSelector.start.annobin_PyUFunc_DefaultLegacyInnerLoopSelector.end.annobin_PyUFunc_DefaultMaskedInnerLoopSelector.start.annobin_PyUFunc_DefaultMaskedInnerLoopSelector.end.annobin_linear_search_type_resolver.start.annobin_linear_search_type_resolver.end.annobin_type_tuple_type_resolver.start.annobin_type_tuple_type_resolver.end.annobin_PyUFunc_DefaultTypeResolver.start.annobin_PyUFunc_DefaultTypeResolver.end.annobin_PyUFunc_SimpleBinaryComparisonTypeResolver.start.annobin_PyUFunc_SimpleBinaryComparisonTypeResolver.end.annobin_PyUFunc_SimpleUnaryOperationTypeResolver.start.annobin_PyUFunc_SimpleUnaryOperationTypeResolver.end.annobin_PyUFunc_NegativeTypeResolver.start.annobin_PyUFunc_NegativeTypeResolver.end.annobin_PyUFunc_OnesLikeTypeResolver.start.annobin_PyUFunc_OnesLikeTypeResolver.end.annobin_PyUFunc_SimpleBinaryOperationTypeResolver.start.annobin_PyUFunc_SimpleBinaryOperationTypeResolver.end.annobin_PyUFunc_AdditionTypeResolver.start.annobin_PyUFunc_AdditionTypeResolver.end.annobin_PyUFunc_SubtractionTypeResolver.start.annobin_PyUFunc_SubtractionTypeResolver.end.annobin_PyUFunc_MultiplicationTypeResolver.start.annobin_PyUFunc_MultiplicationTypeResolver.end.annobin_PyUFunc_AbsoluteTypeResolver.start.annobin_PyUFunc_AbsoluteTypeResolver.end.annobin_PyUFunc_DivisionTypeResolver.start.annobin_PyUFunc_DivisionTypeResolver.end.annobin_PyUFunc_MixedDivisionTypeResolver.start.annobin_PyUFunc_MixedDivisionTypeResolver.end.annobin_PyUFunc_TrueDivisionTypeResolver.start.annobin_PyUFunc_TrueDivisionTypeResolver.enddefault_type_tup.18630.annobin_override.c.annobin_override.c_end.annobin_override.c.hot.annobin_override.c_end.hot.annobin_override.c.unlikely.annobin_override.c_end.unlikely.annobin_override.c.startup.annobin_override.c_end.startup.annobin_override.c.exit.annobin_override.c_end.exit.annobin_normalize_signature_keyword.start.annobin_normalize_signature_keyword.endnormalize_signature_keyword.annobin_PyUFunc_CheckOverride.start.annobin_PyUFunc_CheckOverride.endkwlist.17991kwlist.18006kwlist.18021errmsg_formatter.18087.annobin_mem_overlap.c.annobin_mem_overlap.c_end.annobin_mem_overlap.c.hot.annobin_mem_overlap.c_end.hot.annobin_mem_overlap.c.unlikely.annobin_mem_overlap.c_end.unlikely.annobin_mem_overlap.c.startup.annobin_mem_overlap.c_end.startup.annobin_mem_overlap.c.exit.annobin_mem_overlap.c_end.exit.annobin_diophantine_sort_A.start.annobin_diophantine_sort_A.enddiophantine_sort_A.annobin_get_array_memory_extents.start.annobin_get_array_memory_extents.endget_array_memory_extents.annobin_strides_to_terms.start.annobin_strides_to_terms.endstrides_to_terms.annobin_diophantine_dfs.start.annobin_diophantine_dfs.enddiophantine_dfs.annobin_solve_diophantine.start.annobin_solve_diophantine.end.annobin_diophantine_simplify.start.annobin_diophantine_simplify.end.annobin_offset_bounds_from_strides.start.annobin_offset_bounds_from_strides.end.annobin_solve_may_share_memory.start.annobin_solve_may_share_memory.end.annobin_solve_may_have_internal_overlap.start.annobin_solve_may_have_internal_overlap.end.annobin_ufunc_override.c.annobin_ufunc_override.c_end.annobin_ufunc_override.c.hot.annobin_ufunc_override.c_end.hot.annobin_ufunc_override.c.unlikely.annobin_ufunc_override.c_end.unlikely.annobin_ufunc_override.c.startup.annobin_ufunc_override.c_end.startup.annobin_ufunc_override.c.exit.annobin_ufunc_override.c_end.exit.annobin_PyUFunc_WithOverride.start.annobin_PyUFunc_WithOverride.endndarray.15722ndarray_array_ufunc.15723.annobin_ieee754.c.annobin_ieee754.c_end.annobin_ieee754.c.hot.annobin_ieee754.c_end.hot.annobin_ieee754.c.unlikely.annobin_ieee754.c_end.unlikely.annobin_ieee754.c.startup.annobin_ieee754.c_end.startup.annobin_ieee754.c.exit.annobin_ieee754.c_end.exit.annobin_npy_spacingf.start.annobin_npy_spacingf.end.annobin_npy_spacing.start.annobin_npy_spacing.end.annobin_npy_spacingl.start.annobin_npy_spacingl.end.annobin_npy_nextafterf.start.annobin_npy_nextafterf.end.annobin_npy_nextafter.start.annobin_npy_nextafter.end.annobin_npy_nextafterl.start.annobin_npy_nextafterl.end.annobin_npy_get_floatstatus.start.annobin_npy_get_floatstatus.end.annobin_npy_clear_floatstatus.start.annobin_npy_clear_floatstatus.end.annobin_npy_set_floatstatus_divbyzero.start.annobin_npy_set_floatstatus_divbyzero.end.annobin_npy_set_floatstatus_overflow.start.annobin_npy_set_floatstatus_overflow.end.annobin_npy_set_floatstatus_underflow.start.annobin_npy_set_floatstatus_underflow.end.annobin_npy_set_floatstatus_invalid.start.annobin_npy_set_floatstatus_invalid.end.annobin_npy_math_complex.c.annobin_npy_math_complex.c_end.annobin_npy_math_complex.c.hot.annobin_npy_math_complex.c_end.hot.annobin_npy_math_complex.c.unlikely.annobin_npy_math_complex.c_end.unlikely.annobin_npy_math_complex.c.startup.annobin_npy_math_complex.c_end.startup.annobin_npy_math_complex.c.exit.annobin_npy_math_complex.c_end.exit.annobin_npy_cpowf.start.annobin_npy_cpowf.end.annobin_npy_cpow.start.annobin_npy_cpow.end.annobin_npy_cpowl.start.annobin_npy_cpowl.end.annobin_npy_cabsf.start.annobin_npy_cabsf.end.annobin_npy_cargf.start.annobin_npy_cargf.end.annobin_npy_cexpf.start.annobin_npy_cexpf.end.annobin_npy_clogf.start.annobin_npy_clogf.end.annobin_npy_csqrtf.start.annobin_npy_csqrtf.end.annobin_npy_ccosf.start.annobin_npy_ccosf.end.annobin_npy_csinf.start.annobin_npy_csinf.end.annobin_npy_ctanf.start.annobin_npy_ctanf.end.annobin_npy_ccoshf.start.annobin_npy_ccoshf.end.annobin_npy_csinhf.start.annobin_npy_csinhf.end.annobin_npy_ctanhf.start.annobin_npy_ctanhf.end.annobin_npy_cacosf.start.annobin_npy_cacosf.end.annobin_npy_casinf.start.annobin_npy_casinf.end.annobin_npy_catanf.start.annobin_npy_catanf.end.annobin_npy_cacoshf.start.annobin_npy_cacoshf.end.annobin_npy_casinhf.start.annobin_npy_casinhf.end.annobin_npy_catanhf.start.annobin_npy_catanhf.end.annobin_npy_cabs.start.annobin_npy_cabs.end.annobin_npy_carg.start.annobin_npy_carg.end.annobin_npy_cexp.start.annobin_npy_cexp.end.annobin_npy_clog.start.annobin_npy_clog.end.annobin_npy_csqrt.start.annobin_npy_csqrt.end.annobin_npy_ccos.start.annobin_npy_ccos.end.annobin_npy_csin.start.annobin_npy_csin.end.annobin_npy_ctan.start.annobin_npy_ctan.end.annobin_npy_ccosh.start.annobin_npy_ccosh.end.annobin_npy_csinh.start.annobin_npy_csinh.end.annobin_npy_ctanh.start.annobin_npy_ctanh.end.annobin_npy_cacos.start.annobin_npy_cacos.end.annobin_npy_casin.start.annobin_npy_casin.end.annobin_npy_catan.start.annobin_npy_catan.end.annobin_npy_cacosh.start.annobin_npy_cacosh.end.annobin_npy_casinh.start.annobin_npy_casinh.end.annobin_npy_catanh.start.annobin_npy_catanh.end.annobin_npy_cabsl.start.annobin_npy_cabsl.end.annobin_npy_cargl.start.annobin_npy_cargl.end.annobin_npy_cexpl.start.annobin_npy_cexpl.end.annobin_npy_clogl.start.annobin_npy_clogl.end.annobin_npy_csqrtl.start.annobin_npy_csqrtl.end.annobin_npy_ccosl.start.annobin_npy_ccosl.end.annobin_npy_csinl.start.annobin_npy_csinl.end.annobin_npy_ctanl.start.annobin_npy_ctanl.end.annobin_npy_ccoshl.start.annobin_npy_ccoshl.end.annobin_npy_csinhl.start.annobin_npy_csinhl.end.annobin_npy_ctanhl.start.annobin_npy_ctanhl.end.annobin_npy_cacosl.start.annobin_npy_cacosl.end.annobin_npy_casinl.start.annobin_npy_casinl.end.annobin_npy_catanl.start.annobin_npy_catanl.end.annobin_npy_cacoshl.start.annobin_npy_cacoshl.end.annobin_npy_casinhl.start.annobin_npy_casinhl.end.annobin_npy_catanhl.start.annobin_npy_catanhl.end.annobin_halffloat.c.annobin_halffloat.c_end.annobin_halffloat.c.hot.annobin_halffloat.c_end.hot.annobin_halffloat.c.unlikely.annobin_halffloat.c_end.unlikely.annobin_halffloat.c.startup.annobin_halffloat.c_end.startup.annobin_halffloat.c.exit.annobin_halffloat.c_end.exit.annobin_npy_half_iszero.start.annobin_npy_half_iszero.end.annobin_npy_half_isnan.start.annobin_npy_half_isnan.end.annobin_npy_half_isinf.start.annobin_npy_half_isinf.end.annobin_npy_half_isfinite.start.annobin_npy_half_isfinite.end.annobin_npy_half_signbit.start.annobin_npy_half_signbit.end.annobin_npy_half_spacing.start.annobin_npy_half_spacing.end.annobin_npy_half_copysign.start.annobin_npy_half_copysign.end.annobin_npy_half_eq_nonan.start.annobin_npy_half_eq_nonan.end.annobin_npy_half_nextafter.start.annobin_npy_half_nextafter.end.annobin_npy_half_eq.start.annobin_npy_half_eq.end.annobin_npy_half_ne.start.annobin_npy_half_ne.end.annobin_npy_half_lt_nonan.start.annobin_npy_half_lt_nonan.end.annobin_npy_half_lt.start.annobin_npy_half_lt.end.annobin_npy_half_gt.start.annobin_npy_half_gt.end.annobin_npy_half_le_nonan.start.annobin_npy_half_le_nonan.end.annobin_npy_half_le.start.annobin_npy_half_le.end.annobin_npy_half_ge.start.annobin_npy_half_ge.end.annobin_npy_floatbits_to_halfbits.start.annobin_npy_floatbits_to_halfbits.end.annobin_npy_float_to_half.start.annobin_npy_float_to_half.end.annobin_npy_doublebits_to_halfbits.start.annobin_npy_doublebits_to_halfbits.end.annobin_npy_double_to_half.start.annobin_npy_double_to_half.end.annobin_npy_halfbits_to_floatbits.start.annobin_npy_halfbits_to_floatbits.end.annobin_npy_half_to_float.start.annobin_npy_half_to_float.end.annobin_npy_half_divmod.start.annobin_npy_half_divmod.end.annobin_npy_halfbits_to_doublebits.start.annobin_npy_halfbits_to_doublebits.end.annobin_npy_half_to_double.start.annobin_npy_half_to_double.end.annobin_npy_math.c.annobin_npy_math.c_end.annobin_npy_math.c.hot.annobin_npy_math.c_end.hot.annobin_npy_math.c.unlikely.annobin_npy_math.c_end.unlikely.annobin_npy_math.c.startup.annobin_npy_math.c_end.startup.annobin_npy_math.c.exit.annobin_npy_math.c_end.exit.annobin_npy_copysignl.start.annobin_npy_copysignl.end.annobin_npy_modfl.start.annobin_npy_modfl.end.annobin_npy_ldexpl.start.annobin_npy_ldexpl.end.annobin_npy_frexpl.start.annobin_npy_frexpl.end.annobin_npy_copysign.start.annobin_npy_copysign.end.annobin_npy_modf.start.annobin_npy_modf.end.annobin_npy_ldexp.start.annobin_npy_ldexp.end.annobin_npy_frexp.start.annobin_npy_frexp.end.annobin_npy_copysignf.start.annobin_npy_copysignf.end.annobin_npy_modff.start.annobin_npy_modff.end.annobin_npy_ldexpf.start.annobin_npy_ldexpf.end.annobin_npy_frexpf.start.annobin_npy_frexpf.end.annobin_npy_log2_1pf.start.annobin_npy_log2_1pf.end.annobin_npy_exp2_m1f.start.annobin_npy_exp2_m1f.end.annobin_npy_divmodf.start.annobin_npy_divmodf.end.annobin_npy_log2_1p.start.annobin_npy_log2_1p.end.annobin_npy_exp2_m1.start.annobin_npy_exp2_m1.end.annobin_npy_divmod.start.annobin_npy_divmod.end.annobin_npy_log2_1pl.start.annobin_npy_log2_1pl.end.annobin_npy_exp2_m1l.start.annobin_npy_exp2_m1l.end.annobin_npy_divmodl.start.annobin_npy_divmodl.endget_available_featuresderegister_tm_clones__do_global_dtors_auxcompleted.7303__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END__UBYTE_invert_avx2PyUFunc_gg_gUSHORT_logical_or_avx2UBYTE_conjugateLONGDOUBLE_modfLONGDOUBLE_ldexp_longUSHORT_positivesolve_may_share_memoryHALF_logical_andPyArray_CreateReduceResultPyUFunc_SetUsesArraysAsDataHALF_subtractFLOAT_ldexpTIMEDELTA_mm_d_divideUINT_add_avx2TIMEDELTA_less_equalULONGLONG_negativeCDOUBLE_isnanUSHORT_subtract_avx2ULONG_bitwise_xor_avx2UINT_logical_orUINT_signUBYTE_bitwise_orUINT_negativeUBYTE_logical_orULONGLONG_greater_avx2TIMEDELTA_greaterPyUFunc_GG_GPyUFunc_handlefperrUBYTE_conjugate_avx2CLONGDOUBLE_isfinitenpy_um_str_pyvals_nameUINT_divmodUSHORT_invert_avx2DATETIME__ones_likeFLOAT_copysignUSHORT_squareULONG_equalPyUFunc_SimpleBinaryOperationTypeResolverDATETIME_mM_M_addCLONGDOUBLE_subtractHALF_multiplyUSHORT_left_shiftFLOAT_negativetype_tuple_type_resolverULONGLONG_bitwise_xorULONG_logical_xor_avx2ULONGLONG_invert_avx2UBYTE_square_avx2CFLOAT_logical_notULONGLONG_logical_not_avx2PyUFunc_FromFuncAndDataAndSignatureUSHORT_maximumULONGLONG_squareHALF_fmaxinitscalarmathCLONGDOUBLE_maximumCFLOAT__ones_likeULONGLONG__ones_likediophantine_simplifyULONGLONG_not_equalULONG_less_equal_avx2ULONGLONG_divmodCDOUBLE_logical_orULONGLONG_add_avx2ULONG_logical_xorHALF_nextafterCDOUBLE_reciprocalUINT_reciprocalPyUFunc_ReplaceLoopBySignatureTIMEDELTA_lessHALF_minimumUBYTE_squarePyUFunc_FF_F_As_DD_DCLONGDOUBLE_greater_equalUBYTE_subtract_avx2HALF_conjugateUBYTE_bitwise_xorUSHORT__ones_likeULONGLONG_right_shiftDATETIME_greater_equalHALF_greaterPyUFunc_G_GCDOUBLE_floor_divideCFLOAT_logical_orUBYTE_absoluteBOOL_logical_notHALF_copysignUINT_conjugateCFLOAT_conjugatePyUFunc_RegisterLoopForDescrUSHORT_logical_orULONGLONG_logical_xorUSHORT_not_equal_avx2ULONG_subtractCLONGDOUBLE_minimumCFLOAT_divideFLOAT_modfBOOL_logical_andCFLOAT_fminUSHORT_less_equal_avx2USHORT_logical_notULONG_add_avx2__GNU_EH_FRAME_HDRUSHORT_invertUSHORT_logical_xorPyUFunc_checkfperr_finiCDOUBLE_equalULONGLONG_square_avx2HALF_modfCLONGDOUBLE_logical_notPyUFunc_DefaultLegacyInnerLoopSelectorCFLOAT_logical_andULONGLONG_reciprocalULONGLONG_reciprocal_avx2CDOUBLE_squareUSHORT_square_avx2PyUFunc_F_F_As_D_DUSHORT_reciprocal_avx2CFLOAT_absoluteULONG_powerCDOUBLE_lessUBYTE_reciprocal_avx2CDOUBLE_less_equaladd_scalarmathULONGLONG_conjugate_avx2HALF_isinfUINT_bitwise_andnpy_um_str_subokULONG_not_equal_avx2PyUFunc_e_eCFLOAT_floor_dividePyUFunc_ValidateCastingUINT_logical_not_avx2HALF_negativeBOOL_logical_orUSHORT_left_shift_avx2CFLOAT_signUSHORT_dividePyUFunc_F_FULONGLONG_invertTIMEDELTA_negative_GLOBAL_OFFSET_TABLE_USHORT_bitwise_xorTIMEDELTA_mq_m_multiplynpy_um_str_array_prepareCFLOAT_not_equalDATETIME_Mm_M_addUBYTE_addCFLOAT_lessCDOUBLE_divideFLOAT_signbitULONG_greater_equalULONGLONG_powerULONG_multiplyCDOUBLE__ones_likePyUFunc_OnesLikeTypeResolverTIMEDELTA_equalUINT_absoluteHALF_reciprocalPyUFunc_ff_fULONGLONG_fmodFLOAT_positiveOBJECT_equalULONG_bitwise_xorULONG_negativeCDOUBLE_isfiniteUBYTE_powerUBYTE_bitwise_andsolve_diophantineUINT_negative_avx2TIMEDELTA_maximumPyUFunc_WithOverrideUBYTE_bitwise_and_avx2HALF_logical_notPyUFunc_AdditionTypeResolverUSHORT_greater_equalULONG_reciprocal_avx2ULONG_less_avx2ULONGLONG_bitwise_and_avx2UINT_subtractCFLOAT_isinfULONG_square_avx2ULONG_bitwise_and_avx2HALF_remainderDATETIME_MM_m_subtractUSHORT_reciprocalUINT_lessCDOUBLE_multiplyPyUFunc_OO_OULONGLONG_signUSHORT_multiply_avx2LONGDOUBLE_copysignCDOUBLE_isinfLONGDOUBLE_nextafterULONGLONG_greater_equal_avx2ULONG_subtract_avx2USHORT_signCDOUBLE_absoluteULONGLONG_bitwise_xor_avx2USHORT_bitwise_orUSHORT_conjugateULONG_remainderUINT_bitwise_and_avx2ULONG_minimumBOOL_greater_equalULONGLONG_conjugateUBYTE_right_shiftPyUFunc_O_O_methodUBYTE_logical_not_avx2UINT_logical_xor_avx2USHORT_add_avx2USHORT_not_equalUBYTE_bitwise_or_avx2UBYTE_negative_avx2TIMEDELTA_mq_m_divideUBYTE_minimumCLONGDOUBLE_logical_andUBYTE_add_avx2UINT_invertUSHORT_right_shiftULONGLONG_logical_and_avx2PyUFunc_f_fHALF_frexpUINT_subtract_avx2ULONGLONG_lessCLONGDOUBLE_isnanUINT_square_avx2PyUFunc_ff_f_As_dd_dULONGLONG_dividePyUFunc_DefaultMaskedInnerLoopSelectorULONGLONG_not_equal_avx2PyUFunc_SubtractionTypeResolverUSHORT_bitwise_and_avx2LONGDOUBLE_frexpUSHORT_fmodULONGLONG_minimumFLOAT_ldexp_longPyUFunc_f_f_As_d_dCLONGDOUBLE_fmaxUSHORT_divmodUSHORT_equal_avx2OBJECT_greater_equalULONG_dividePyUFunc_clearfperrPyUFunc_e_e_As_f_fULONGLONG_bitwise_andULONG__ones_likeHALF_spacingufunc_seterrTIMEDELTA_md_m_divideUBYTE_left_shiftPyUFunc_FF_FCLONGDOUBLE_fminBOOL_lessUBYTE_negativeCDOUBLE_logical_andULONGLONG_less_equalHALF_signCDOUBLE_maximumHALF__ones_likePyUFunc_ee_e_As_ff_fPyUFunc_IsNaTTypeResolverULONG_conjugate_avx2UBYTE_signUINT_minimum__cpu_modelUINT_invert_avx2ULONG_logical_orCLONGDOUBLE_equalFLOAT_remainderULONG_equal_avx2UINT_equal_avx2UINT_greater_equal_avx2OBJECT_signUSHORT_equalUSHORT_less_avx2npy_um_str_array_wrapPyUFunc_FromFuncAndDataDATETIME_greaterULONG_greaterufunc_geterrULONGLONG_multiply_avx2UBYTE_lessCLONGDOUBLE_greaterUBYTE_logical_xorULONGLONG_equal_avx2UINT_fmodCDOUBLE_logical_notUINT_logical_and_avx2UBYTE_not_equalULONG_conjugatenpy_um_str_outTIMEDELTA_not_equalUBYTE_divideCDOUBLE_not_equalPyUFunc_MultiplicationTypeResolverUINT_multiplyCLONGDOUBLE_lessBOOL_absoluteUSHORT_lessCDOUBLE_minimumUINT_greaterPyUFunc_GenericFunctionHALF_less_equalCFLOAT_fmaxLONGDOUBLE_spacingULONGLONG_logical_andPyUFunc_ee_eHALF_maximum__TMC_END__HALF_absoluteUBYTE_greater_avx2UBYTE_invertDATETIME_minimumDATETIME_Mm_M_subtractULONG_logical_and_avx2CDOUBLE_conjugateHALF_ldexp_longHALF_squareUINT_powerULONG_invertUINT_logical_andlinear_search_type_resolverUINT_right_shift_avx2UINT_logical_or_avx2UINT_multiply_avx2PyUFunc_ReduceWrapperULONGLONG_logical_xor_avx2__dso_handleULONGLONG_multiplyUINT_bitwise_or_avx2TIMEDELTA_dm_m_multiplyHALF_ldexpUSHORT_negative_avx2ULONGLONG_left_shiftLONGDOUBLE_remainderTIMEDELTA_minimumULONGLONG_right_shift_avx2ULONG_reciprocalFLOAT_sqrtULONG_lessUINT_logical_xorCFLOAT_isnanPyUFunc_SimpleBinaryComparisonTypeResolverCFLOAT_logical_xorUINT_less_avx2BOOL__ones_likeULONG_multiply_avx2CFLOAT_isfiniteULONGLONG_subtractFLOAT_divmodBOOL_equalLONGDOUBLE_signbitULONGLONG_equalCLONGDOUBLE_multiplyOBJECT_greaterUSHORT_logical_and_avx2DATETIME_lessUBYTE_equal_avx2PyUFunc_CheckOverrideULONGLONG_logical_notULONGLONG_logical_orULONG_greater_avx2USHORT_absoluteUINT_bitwise_xor_avx2HALF_less__cpu_features2ULONGLONG_less_equal_avx2CFLOAT_less_equalDATETIME_less_equalULONG_bitwise_andCFLOAT_greater_equalsolve_may_have_internal_overlapULONGLONG_bitwise_orCLONGDOUBLE_isinfHALF_equalUSHORT_greater_equal_avx2UINT_conjugate_avx2FLOAT_nextafterUBYTE_reciprocalLONGDOUBLE_divmodUBYTE_logical_notCLONGDOUBLE_less_equalULONGLONG_left_shift_avx2CLONGDOUBLE_logical_orCLONGDOUBLE_divideCDOUBLE_logical_xorCLONGDOUBLE_logical_xorULONG_positiveOBJECT_lessHALF_not_equalUBYTE_bitwise_xor_avx2UBYTE_right_shift_avx2UINT_bitwise_xorPyUFunc_g_gCFLOAT_subtractULONG_not_equalDOUBLE_sqrtTIMEDELTA_absoluteoffset_bounds_from_stridesPyUFunc_TypeHALF_greater_equalULONGLONG_addBOOL_greaterUINT__ones_likeUINT_positiveULONGLONG_remainderUSHORT_minimumULONG_fmodUSHORT_negativeTIMEDELTA_positiveBOOL_not_equalPyUFunc_On_OmBOOL_less_equalHALF_addOBJECT_less_equalUBYTE_divmodCLONGDOUBLE_floor_divideULONGLONG_logical_or_avx2UBYTE_positiveOBJECT_not_equalPyUFunc_DivisionTypeResolverFLOAT_frexpPyUFunc_GetPyValuesTIMEDELTA_signCFLOAT_squareULONG_divmodUINT_equalULONG_less_equalUBYTE_left_shift_avx2HALF_logical_xorLONGDOUBLE_negativeUINT_left_shift_avx2CLONGDOUBLE__argPyUFunc_D_DUINT_less_equalUSHORT_less_equalHALF_dividePyUFunc_RegisterLoopForTypeCFLOAT_multiplyUSHORT_greater_avx2ULONG_signUINT_addUBYTE_greater_equalHALF_isfiniteCFLOAT_reciprocalCLONGDOUBLE_not_equalPyUFunc_dd_dULONG_greater_equal_avx2UINT_remainderUINT_maximumCLONGDOUBLE_conjugateUBYTE__ones_likeULONGLONG_absoluteUINT_bitwise_orUINT_divideUINT_not_equal_avx2CLONGDOUBLE_reciprocalCDOUBLE_fminUBYTE_subtractUSHORT_logical_not_avx2UBYTE_greaterUBYTE_less_equal_avx2UBYTE_less_equalHALF_divmodULONG_left_shift_avx2UBYTE_greater_equal_avx2UINT_right_shiftTIMEDELTA_greater_equalULONG_logical_not_avx2CLONGDOUBLE__ones_likeUSHORT_remainderDATETIME_equalCFLOAT_minimumTIMEDELTA_mm_m_subtractTIMEDELTA_mm_m_addUSHORT_greaterULONG_left_shiftTIMEDELTA_md_m_multiplyPyUFunc_MixedDivisionTypeResolverUINT_logical_not__cpu_indicator_initUBYTE_maximumULONGLONG_bitwise_or_avx2DATETIME_isnatPyUFunc_getfperrULONG_maximumULONG_negative_avx2ULONG_logical_notULONG_squareUINT_reciprocal_avx2USHORT_subtractHALF_isnanUBYTE_logical_xor_avx2TIMEDELTA__ones_likeUSHORT_bitwise_andCFLOAT_addUBYTE_logical_and_avx2UBYTE_fmodTIMEDELTA_isnatDATETIME_not_equalUSHORT_conjugate_avx2npy_um_str_ufuncCDOUBLE_fmaxULONG_absoluteUBYTE_remainderLONGDOUBLE_ldexpPyUFunc_SimpleUnaryOperationTypeResolverCDOUBLE_greater_equalUSHORT_logical_xor_avx2ULONG_addULONGLONG_greater_equalHALF_signbitCLONGDOUBLE_signPyUFunc_OO_O_methodPyArray_InitializeReduceResultPyUFunc_d_dUINT_less_equal_avx2USHORT_logical_andPyUFunc_DD_DPyUFunc_DefaultTypeResolverUBYTE_less_avx2LONGDOUBLE_positiveUSHORT_powerUBYTE_multiplyUSHORT_right_shift_avx2UBYTE_not_equal_avx2TIMEDELTA_qm_m_multiplyUBYTE_logical_andCDOUBLE_subtractCLONGDOUBLE_absoluteUINT_greater_equalULONG_logical_andULONGLONG_greaterDATETIME_maximumULONG_bitwise_or_avx2ULONGLONG_negative_avx2CFLOAT_equalCDOUBLE_greaterPyUFunc_e_e_As_d_dCLONGDOUBLE_squareCDOUBLE_signULONG_right_shift_avx2npy_um_str_array_finalizeUINT_not_equalUINT_left_shiftPyUFunc_ee_e_As_dd_dUBYTE_equalHALF_floor_divideULONG_right_shiftUSHORT_bitwise_or_avx2ULONGLONG_maximumULONGLONG_positiveCDOUBLE_addFLOAT_spacingCLONGDOUBLE_addHALF_logical_orHALF_fminCDOUBLE__argPyUFunc_O_OULONGLONG_subtract_avx2ULONGLONG_less_avx2ULONG_logical_or_avx2UBYTE_logical_or_avx2PyUFunc_NegativeTypeResolverULONG_bitwise_orUINT_squareUINT_greater_avx2CFLOAT__argUSHORT_multiplyPyUFunc_AbsoluteTypeResolverPyUFunc_TrueDivisionTypeResolverCFLOAT_maximum_DYNAMICUSHORT_addCFLOAT_greaterUBYTE_multiply_avx2USHORT_bitwise_xor_avx2ULONG_invert_avx2HALF_positivectanf@@GLIBC_2.2.5log10@@GLIBC_2.2.5PyModule_AddObjectPyExc_ImportErrornpy_ccoshlccoshl@@GLIBC_2.2.5PyDict_SetItemStringnpy_half_to_floatnpy_catanfnpy_cacoshnpy_halfbits_to_floatbitsatan2@@GLIBC_2.2.5powf@@GLIBC_2.27frexp@@GLIBC_2.2.5PyBool_Typenpy_exp2_m1lcpowf@@GLIBC_2.2.5memset@@GLIBC_2.2.5npy_ldexpcasinh@@GLIBC_2.2.5PyBytes_AsStringAndSizePyObject_CallMethodPyFrozenSet_Typenpy_half_iszeroPyNumber_RemainderPyExc_ValueErrorPyType_Readyctanhf@@GLIBC_2.2.5npy_ctanfldexp@@GLIBC_2.2.5__fprintf_chk@@GLIBC_2.3.4npy_casinhlPyLong_FromUnsignedLongPyNumber_DivmodPyModule_AddStringConstantPyLong_FromUnsignedLongLongnpy_spacingnpy_clogfnpy_spacingl__gmon_start__csqrtl@@GLIBC_2.2.5npy_cacosllog1p@@GLIBC_2.2.5PyGILState_Releasenpy_cpowlnpy_half_leldexpl@@GLIBC_2.2.5npy_half_nextafterctanl@@GLIBC_2.2.5PyCapsule_TypePyUnicode_FromStringcacosf@@GLIBC_2.2.5npy_nextafteratan2l@@GLIBC_2.2.5PyErr_NoMemorynpy_cexplPyEval_CallObjectWithKeywordsPyList_Typenpy_cacoshlPyNumber_InvertPyObject_CallFunctionObjArgslog2@@GLIBC_2.2.5_npy_umathmodule_ARRAY_APIPyObject_IsTruemalloc@@GLIBC_2.2.5PyLong_FromDouble_Py_NotImplementedStructPyExc_TypeErrorcasinhf@@GLIBC_2.2.5log2l@@GLIBC_2.2.5cpow@@GLIBC_2.2.5npy_cacosnpy_half_isnannpy_nextafterlnpy_half_spacingnpy_carglPyObject_Notnpy_divmodPyDict_Typenpy_set_floatstatus_divbyzeronpy_cabsflogf@@GLIBC_2.27PyNumber_LshiftPyExc_KeyErrorPyNumber_NegativePyComplex_Type__memcpy_chk@@GLIBC_2.3.4npy_ccosPyNumber_Positivenpy_ctanhfPyExc_FloatingPointErrorPyInit_umathPyOS_snprintfnpy_cexpPyUnicode_FromFormatPyNumber_Absolutelog1pf@@GLIBC_2.2.5casinhl@@GLIBC_2.2.5PyDict_Nextmodfl@@GLIBC_2.2.5PyLong_AsLongPyModule_AddIntConstantlog1pl@@GLIBC_2.2.5npy_clear_floatstatusnpy_clogPyExc_RuntimeWarningnpy_divmodlPyErr_Format_ITM_deregisterTMCloneTablePyFloat_FromDoubleatan2f@@GLIBC_2.2.5PyNumber_PowerPyNumber_AndPyMem_RawMallocfmod@@GLIBC_2.2.5npy_log2_1pPyArg_ParseTuplecacosh@@GLIBC_2.2.5npy_casinfPyObject_GetAttrPyErr_ExceptionMatchesPyErr_Occurrednpy_half_nefmodf@@GLIBC_2.2.5PyDict_CopyPyMem_RawReallocPyTuple_GetSlicefree@@GLIBC_2.2.5ldexpf@@GLIBC_2.2.5strlen@@GLIBC_2.2.5exp2l@@GLIBC_2.2.5_ITM_registerTMCloneTablePyArg_ParseTupleAndKeywordsnpy_csinfPyCapsule_NewPyFloat_Typenpy_modflexpm1f@@GLIBC_2.2.5PyNumber_FloorDividecatanhf@@GLIBC_2.2.5expf@@GLIBC_2.27csinl@@GLIBC_2.2.5ctan@@GLIBC_2.2.5npy_cpownpy_half_isfinitenextafterf@@GLIBC_2.2.5__cxa_finalize@@GLIBC_2.2.5PyExc_IndexErrorPySet_Typecacosl@@GLIBC_2.2.5_Py_FalseStructPyErr_SetObjectcatanf@@GLIBC_2.2.5PyNumber_Multiplynpy_half_eq_nonanPyEval_RestoreThreadnpy_copysignnpy_frexpfnpy_half_divmodPyUnicode_InternFromStringlog2f@@GLIBC_2.27PyUnicode_TypePyExc_DeprecationWarningnpy_ccosfnpy_ldexplnextafter@@GLIBC_2.2.5npy_csqrtfnpy_floatbits_to_halfbitsPyUnicode_Concatnpy_half_gt_Py_TrueStructnpy_half_signbitPyUnicode_AsASCIIStringnpy_catanhlPyTuple_Packcacos@@GLIBC_2.2.5PyEval_SaveThreadnpy_catanlcabs@@GLIBC_2.2.5PyTuple_Typenpy_cargnpy_exp2_m1PyMem_RawFreenpy_copysignlPyModule_GetDictfetestexcept@@GLIBC_2.2.5npy_set_floatstatus_overflowfrexpl@@GLIBC_2.2.5npy_half_copysignccoshf@@GLIBC_2.2.5PySequence_GetItemPyDict_GetItemnpy_cabsnpy_double_to_halfnpy_get_floatstatuscexpf@@GLIBC_2.2.5PyObject_RichComparenpy_catanhnpy_casinPySequence_Sizenpy_set_floatstatus_invalidnpy_ccoshfPyExc_RuntimeErrornpy_cacosfPyNumber_Rshiftclogf@@GLIBC_2.2.5PyType_IsSubtypecabsf@@GLIBC_2.2.5PyBytes_TypePyBytes_FromStringcabsl@@GLIBC_2.2.5npy_csinhfnpy_half_isinfcpowl@@GLIBC_2.2.5PyObject_InitPyNumber_AddPyGILState_Ensurectanhl@@GLIBC_2.2.5npy_casinhfhypotf@@GLIBC_2.2.5PyErr_WarnExnpy_float_to_halfPyObject_CallObjectPyNumber_Xormemmove@@GLIBC_2.2.5cbrtf@@GLIBC_2.2.5npy_ctanhPyObject_TypePyThreadState_GetDictnpy_cloglnpy_catannpy_frexpcatanhl@@GLIBC_2.2.5csinhf@@GLIBC_2.2.5npy_cexpfPy_BuildValuenpy_ctannpy_half_eqPyNumber_Subtractqsort@@GLIBC_2.2.5PyObject_GetAttrStringfmodl@@GLIBC_2.2.5__bss_startPyObject_IsInstancePyLong_Typenextafterl@@GLIBC_2.2.5ctanh@@GLIBC_2.2.5_Py_EllipsisObject__stack_chk_fail@@GLIBC_2.4_Py_NoneStructnpy_exp2_m1fPyEval_GetBuiltinsnpy_cpowffrexpf@@GLIBC_2.2.5__memset_chk@@GLIBC_2.3.4npy_half_genpy_cabslnpy_ctanhlnpy_half_to_doublemodff@@GLIBC_2.2.5npy_csinPyDict_GetItemStringnpy_nextafterfPyUFunc_APInpy_half_le_nonanPyObject_Callexp2@@GLIBC_2.2.5strcpy@@GLIBC_2.2.5csin@@GLIBC_2.2.5csqrtf@@GLIBC_2.2.5PyExc_AttributeErrorclog@@GLIBC_2.2.5PySlice_TypePyLong_FromLongccosl@@GLIBC_2.2.5catanh@@GLIBC_2.2.5casin@@GLIBC_2.2.5PyDict_DelItemStringPyNumber_Orcasinf@@GLIBC_2.2.5log10f@@GLIBC_2.2.5exp2f@@GLIBC_2.27npy_cargfcsqrt@@GLIBC_2.2.5ccos@@GLIBC_2.2.5PyLong_FromLongLongPyExc_NameErrornpy_cacoshfPyExc_FutureWarningfeclearexcept@@GLIBC_2.2.5PyTuple_SizePyImport_ImportModulePyErr_ClearPyModule_Create2clogl@@GLIBC_2.2.5PyTuple_Newcexpl@@GLIBC_2.2.5catanl@@GLIBC_2.2.5cacoshf@@GLIBC_2.2.5expm1@@GLIBC_2.2.5csinh@@GLIBC_2.2.5csinf@@GLIBC_2.2.5PyObject_RichCompareBoolPyErr_SetStringPyNumber_TrueDividestderr@@GLIBC_2.2.5npy_ctanlnpy_half_lt_nonanferaiseexcept@@GLIBC_2.2.5npy_csinhlnpy_spacingfPyObject_CallFunctionnpy_csqrtlnpy_csinhPyUnicode_FromStringAndSizenpy_csqrtnpy_csinlcacoshl@@GLIBC_2.2.5ccosh@@GLIBC_2.2.5npy_modffcbrt@@GLIBC_2.2.5_edatacbrtl@@GLIBC_2.2.5csinhl@@GLIBC_2.2.5npy_casinhcexp@@GLIBC_2.2.5npy_set_floatstatus_underflownpy_log2_1plnpy_modfcatan@@GLIBC_2.2.5npy_casinlccosf@@GLIBC_2.2.5PyList_Newnpy_half_ltPyCallable_Checklog10l@@GLIBC_2.2.5npy_ccoshPyUnicode_AsUTF8Stringmemcpy@@GLIBC_2.14PyCapsule_GetPointerexpm1l@@GLIBC_2.2.5npy_divmodfnpy_catanhfnpy_frexplnpy_doublebits_to_halfbitsPyDict_SetItemnpy_ccoslcasinl@@GLIBC_2.2.5PyObject_Reprnpy_copysignfnpy_log2_1pfnpy_ldexpfhypotl@@GLIBC_2.2.5hypot@@GLIBC_2.2.5npy_halfbits_to_doublebitsPyDict_New.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.comment.gnu.build.attributes88$.o``8   /@99Ho`N`NUo`R`RdRRonBp xPPspp~   <JJ JJ@ cc7ؚؚ8; 555 H5H h5h 5I 969 09- Zv:>= P| `#